Characteristics of Autonomously Configured Structure Formation Based on Power Consumption and Data Transfer Efficiency

Author(s):  
Ryo Hamamoto ◽  
Chisa Takano ◽  
Kenji Ishida ◽  
Masaki Aida
1998 ◽  
Vol 34 (2) ◽  
pp. 407-410
Author(s):  
S.G. Stan ◽  
H. Van Kempen ◽  
C.-C.S. Lin ◽  
M.-S.M. Yen ◽  
W.W. Wang

2015 ◽  
Vol 24 (03) ◽  
pp. 1550040 ◽  
Author(s):  
V. Vinod Kumar ◽  
M. Meenakshi

This paper presents the design and simulation results for a Federal Communication Committee (FCC) complaint current starved delay line based Ultra Wide Band (UWB) Gaussian pulse transmitter, which is designed for operating in the 3.1–10.6 GHz range. The wavelet is a mono cycle Gaussian impulse wave, which is practically well suited for low cost, low power, low data rate wireless data transfer such as in wireless body area network (WBAN) applications. The transmitter operating frequency and bandwidth (BW) is controlled using a dc voltage provided at the input stage of a voltage controlled delay line (VCDL) and this aspect can be exploited for increasing the communication coverage area without compromising on the power consumption. A Gaussian wave shaping is performed for FCC compliance and the simulation has been carried out with 130 nm technology. The simulation of our design suggests an average dynamic power consumption of 1.11 mw for an energy efficiency of 14.2 pJ/pulse. The proposed IR-UWB transmitter design though a bit inferior in terms of the power efficiency, can claim superior performance with respect to tuning the BW, which is very relevant in a cognitive wireless networking scenario with other interfering signals.


2021 ◽  
Vol 2094 (2) ◽  
pp. 022007
Author(s):  
B Z Belashev

Abstract Designed on the base of seismic radon station SRS-05 hardware and software complex receives and forms the data of the measurements from station, perform the archiving of the data and sends it to the end users. Besides, the complex realises remote control by station. Additional devices of this complex do not influence the process of measuring of the station and just provide access to the internet and data transfer to specified ftp-server directly via the network or the mobile in places with lack of cable infrastructures. New functional properties increase the adaptive capabilities of the complex, provide its autonomous work and contribute to its transformation into a smart sensor module for monitoring of an environment. Small dimensions and low power consumption of its components provide greater mobility of the complex and increase the time of its autonomous operation.


Author(s):  
Hussain Attia ◽  
Amjad Omar ◽  
Maen Takruri ◽  
Halah Y. Ali

<p>The high power consumption of conventional street lighting systems, and the consequences on environmental ecosystem due to continuous turning ON of light, have led researchers to seek solutions to this problem. LED light dimming system has been presented in many studies using computerized systems with or without wireless monitoring facility. The demerits of these systems include complexity, high cost and unfixed data transfer speed. This paper proposes to reduce power consumption of street lighting through a decentralized light dimming system that is based on Pulse Width Modulation (PWM). This is in addition to replacing conventional high power lamps with lower power LED lamps. The dimming control circuit of this system is fixed on each pole and controlled individually resulting in faster and more reliable response. The proposed system uses the available infrastructure and is suitable for small or main streets regardless of the number of light poles. It is also flexible in its coverage distance due to the freedom of motion detector selection. The advantages of using LED lighting on the environment as compared to conventional lighting are explained. Simulations reveal the effectiveness of the proposed system on energy saving and on the environment.</p>


Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3304
Author(s):  
Lianghui Ding ◽  
Kehong Chen ◽  
Falong Huang ◽  
Feng Yang ◽  
Liang Qian

Through-metal transfer of energy and data using piezoelectric transduce can avoid the potential leakage problem caused by physical penetrations and wired feed-through. The through-metal transfer efficiency of energy or data is determined by the relative pressure on the receiving PZT (piezoelectric transducer). Hence, in this paper, we first propose the Spatial Equivalent Plane Acoustic Pressure (SEPAP), which is defined as the integration of the acoustic pressure over the receiving area, to model the pressure on the receiving PZT. Then we analyze the features of SEPAP and the factors impacting it by utilizing COMSOL. Furthermore, we propose a low-cost and small-size prototype for simultaneous transfer of energy and bidirectional communication through metal by using two pairs of PZTs working on different resonant frequencies. Extensive experiment has been done on evaluating the match between SEPAP transfer efficiency and the power transfer efficiency and analyzing the achievable data rate for bi-directional communication. Test through a 20 mm aluminum alloy plate shows that power transmission with efficiency 20.3% and data communication rate up to 38.4 Kbps can be achieved simultaneously.


Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1821
Author(s):  
Sandy A. Wasif ◽  
Salma Hesham ◽  
Diana Goehringer ◽  
Klaus Hofmann ◽  
Mohamed A. Abd El Ghany

A network-on-chip (NoC) offers high performance, flexibility and scalability in communication infrastructure within multi-core platforms. However, NoCs contribute significantly to the overall system’s power consumption. The double-layer energy efficient synchronous-asynchronous circuit-switched NoC (CS-NoC) is proposed to enhance the power utilization. To reduce the dynamic power consumption, single-rail asynchronous protocols are utilized. The two-phase and four-phase encoding algorithms are analyzed to determine the most efficient technique. For the data layer, the two asynchronous protocols reduced the power consumption by 80%, with an increase in latency when compared with the fully synchronous protocol. However, the two-phase single-rail protocol had better performance compared with the four-phase protocol by 38%, with the same power consumption and a slight increase in area of 5%. Based on this conducted analysis, the asynchronous two-phase layer had significant power reduction yet operated at a moderate frequency. Therefore, the proposed NoC is divided into two data transfer layers with a single control layer. The data transfer layers are designed using synchronous and asynchronous protocols. The synchronous layer is designated to high-frequency loads, and the asynchronous layer is confined to low-frequency loads. The switching between the layers creates a trade-off between the maximum allowed frequency and the power consumption. The proposed NoC reduces the overall power consumption by 23% when compared with recent previous work. The NoC maintains the same system performance with an 8% area increase over the fully synchronous double-layer in the literature.


2019 ◽  
Vol 8 (3) ◽  
pp. 744-752
Author(s):  
Lai Ly Pon ◽  
Sharul Kamal Abdul Rahim ◽  
Chee Yen Leow ◽  
Tien Han Chua

Accomplishing equilibrium in terms of transfer efficiency for dual-band wireless energy transfer (WET) system remains as one of key concerns particularly in the implementation of a single transmitter device which supports simultaneous energy and data transfer functionality. Three stages of design method are discussed in addressing the aforementioned concern. A single layer dual-band printed spiral resonator for non-radiative wireless energy transfer operating at 6.78 MHz and 13.56 MHz is presented. By employing multi-coil approach, measured power transfer efficiency for a symmetrical link separated at axial distance of 30 mm are 72.34% and 74.02% at the respective frequency bands. When operating distance is varied between 30 mm to 38 mm, consistency of simulated peak transfer efficiency above 50% is achievable.


2012 ◽  
Vol 8 (4) ◽  
pp. 504946 ◽  
Author(s):  
Niamat Ullah ◽  
M. Sanaullah Chowdhury ◽  
Mosaddique Al Ameen ◽  
Kyung Sup Kwak

Critical infrastructure monitoring applications are rapidly increasing. Application requirements include reliable data transfer, energy efficiency, and long deployment lifetime. These applications must also be able to operate in an extremely low-cost communication environment in order to be attractive to potential users. A low rate wireless personal area network can help control and manage the operations of such applications. In this paper, we present a medium access control (MAC) protocol for low-energy critical infrastructure monitoring (LECIM) applications. The proposed MAC protocol is based on a framed slotted aloha multiple access schemes. For downlink communication, we use a wakeup radio approach to avoid complex bookkeeping associated with the traditional MAC protocols. Analytical expressions for power consumption and delay are derived to analyze and compare the performance of our proposed protocol with the existing well-known T-MAC, B-MAC, X-MAC, ZigBee, and WiseMAC protocols. It is shown that our proposed protocol outperforms all the other protocols in terms of power consumption and delay.


Sign in / Sign up

Export Citation Format

Share Document