Off-line programming system of industrial robot for spraying manufacturing optimization

Author(s):  
Bo Zhou ◽  
Xi Zhang ◽  
Zhengda Meng ◽  
Xianzhong Dai
Robotica ◽  
2013 ◽  
Vol 31 (7) ◽  
pp. 1143-1153 ◽  
Author(s):  
Luca Bascetta ◽  
Gianni Ferretti ◽  
Gianantonio Magnani ◽  
Paolo Rocco

SUMMARYThe present paper addresses the issues that should be covered in order to develop walk-through programming techniques (i.e. a manual guidance of the robot) in an industrial scenario. First, an exact formulation of the dynamics of the tool the human should feel when interacting with the robot is presented. Then, the paper discusses a way to implement such dynamics on an industrial robot equipped with an open robot control system and a wrist force/torque sensor, as well as the safety issues related to the walk-through programming. In particular, two strategies that make use of admittance control to constrain the robot motion are presented. One slows down the robot when the velocity of the tool centre point exceeds a specified safety limit, the other one limits the robot workspace by way of virtual safety surfaces. Experimental results on a COMAU Smart Six robot are presented, showing the performance of the walk-through programming system endowed with the two proposed safety strategies.


Author(s):  
João Pedro Carvalho de Souza ◽  
André Luiz Castro ◽  
Luís F. Rocha ◽  
Manuel F. Silva

Purpose This paper aims to propose a translation library capable of generating robots proprietary code after their offline programming has been performed in a software application, named AdaptPack Studio, running over a robot simulation and offline programming software package. Design/methodology/approach The translation library, named AdaptPack Studio Translator, is capable to generate proprietary code for the Asea Brown Boveri, FANUC, Keller und Knappich Augsburg and Yaskawa Motoman robot brands, after their offline programming has been performed in the AdaptPack Studio application. Findings Simulation and real tests were performed showing an improvement in the creation, operation, modularity and flexibility of new robotic palletizing systems. In particular, it was verified that the time needed to perform these tasks significantly decreased. Practical implications The design and setup of robotics palletizing systems are facilitated by an intuitive offline programming system and by a simple export command to the real robot, independent of its brand. In this way, industrial solutions can be developed faster, in this way, making companies more competitive. Originality/value The effort to build a robotic palletizing system is reduced by an intuitive offline programming system (AdaptPack Studio) and the capability to export command to the real robot using the AdaptPack Studio Translator. As a result, companies have an increase in competitiveness with a fast design framework. Furthermore, and to the best of the author’s knowledge, there is also no scientific publication formalizing and describing how to build the translators for industrial robot simulation and offline programming software packages, being this a pioneer publication in this area.


2014 ◽  
Vol 915-916 ◽  
pp. 482-485
Author(s):  
Yu Chen Ge ◽  
Yun Yan Hu ◽  
Jun Wang ◽  
Sen Mu

Based on the research progress of off-line programming system, propose a virtual manufacturing platform to simulate and monitor industrial robot welding task, by combining motion simulation of three-dimensional models, welding characteristics information-driven and monitoring communications. The platform designed as a three-dimensional solid modeling foreground, with kinematics algorithms and task characteristics as the core, to achieve a common solution that provide jobs simulation ,tatistical information and on-line monitoring. And there is a feasibility analysis of technical means.


Robotica ◽  
2005 ◽  
Vol 23 (6) ◽  
pp. 743-754 ◽  
Author(s):  
Per Cederberg ◽  
Magnus Olsson ◽  
Gunnar Bolmsjö

A task-oriented system structure has been developed. In normal industrial robot programming, the path is created and the process is based on the path. Here a process-focused method is proposed, where a task can be split in sub-tasks, one for each part of the process with similar process-characteristics. By carefully encapsulating the information needed to execute a sub-task, this component can be re-used whenever the actual sub-task occurs. Applications using system design do not change between simulation and actual shop floor runs and the system allows a mix of real- and simulated components during simulation and run-time.


2018 ◽  
Vol 15 (2) ◽  
pp. 656-662 ◽  
Author(s):  
Huda Hatam Dalef ◽  
Faieza Abdul Aziz ◽  
Wan Zuha Wan Hasan ◽  
Mohd Khairol Anuar Mohd Ariffin

Nowadays, the robotic arm is fast becoming the most popular robotic form used in the industry among others. Therefore, the issues regarding remote monitoring and controlling system are very important, which measures different environmental parameters at a distance away from the room and sets various condition for a desired environment through a wireless communication system operated from a central room. Thus, it is crucial to create a programming system which can control the movement of each part of the industrial robot in order to ensure it functions properly. EDARM ED-7100 is one of the simplest models of the robotic arm, which has a manual controller to control the movement of the robotic arm. In order to improve this control system, a new controller system was redesigned in this work by using Zigbee. It is a communication protocol for safety and economic data communication in an industrial field, where the wired communication is either expensive or difficult under physical and experimental conditions, such as the worker cannot recognize the error through the manufacturing process. Hence, this paper introduced a system that used microcontroller (AT89S52) with wireless devices (Zigbee) and sensors to control the robotic hand (EDARM ED-7100) and to monitor the information regarding the robot's parameter using WiFi technology. A mathematical model was derived through an empirical method to specify the robot's configuration changes. In this work, the ability of controlling system had increased, as well as hardware, while the necessities of other similar equipment for data communication were minimized. In addition, it presents the comparison of two controlling systems: using the Zigbee and without using it. Based from the experiment it can be safely concluded that the robotic arm's movement had followed a linear function.


2020 ◽  
Vol 4 (2) ◽  
pp. 48-55
Author(s):  
A. S. Jamaludin ◽  
M. N. M. Razali ◽  
N. Jasman ◽  
A. N. A. Ghafar ◽  
M. A. Hadi

The gripper is the most important part in an industrial robot. It is related with the environment around the robot. Today, the industrial robot grippers have to be tuned and custom made for each application by engineers, by searching to get the desired repeatability and behaviour. Vacuum suction is one of the grippers in Watch Case Press Production (WCPP) and a mechanism to improve the efficiency of the manufacturing procedure. Pick and place are the important process for the annealing process. Thus, by implementing vacuum suction gripper, the process of pick and place can be improved. The purpose of vacuum gripper other than design vacuum suction mechanism is to compare the effectiveness of vacuum suction gripper with the conventional pick and place gripper. Vacuum suction gripper is a mechanism to transport part and which later sequencing, eliminating and reducing the activities required to complete the process. Throughout this study, the process pick and place became more effective, the impact on the production of annealing process is faster. The vacuum suction gripper can pick all part at the production which will lower the loss of the productivity. In conclusion, vacuum suction gripper reduces the cycle time about 20%. Vacuum suction gripper can help lower the cycle time of a machine and allow more frequent process in order to increase the production flexibility.


Author(s):  
Marek Vagas

Urgency of the research. Automated workplaces are growing up in present, especially with implementation of industrial robots with feasibility of various dispositions, where safety and risk assessment is considered as most important issues. Target setting. The protection of workers must be at the first place, therefore safety and risk assessment at automated workplaces is most important problematic, which had presented in this article Actual scientific researches and issues analysis. Actual research is much more focused at standard workplaces without industrial robots. So, missing of information from the field of automated workplaces in connection with various dispositions can be considered as added value of article. Uninvestigated parts of general matters defining. Despite to lot of general safety instructions in this area, still is missed clear view only at automated workplace with industrial robots. The research objective. The aim of article is to provide general instructions directly from the field of automated workplaces The statement of basic materials. For success realization of automated workplace is good to have a helping hand and orientation requirements needed for risk assessment at the workplace. Conclusions. The results published in this article increase the awareness and information of such automated workplaces, together with industrial robots. In addition, presented general steps and requirements helps persons for better realization of these types of workplaces, where major role takes an industrial robot. Our proposed solution can be considered as relevant base for risk assessment such workplaces with safety fences or light barriers.


Author(s):  
Josué Rafael Sánchez-Lerma ◽  
Luis Armando Torres-Rico ◽  
Héctor Huerta-Gámez ◽  
Ismael Ruiz-López

This paper proposes the development of the methodology to be carried out for the metal joining process through the GMAW welding process in the Fanuc LR Mate 200iD industrial robot. The parameters or properties were considered for the application to be as efficient as possible, such parameters as speed of application, characteristics of the filler material, gas to be used as welding protection. The GMAW welding process can be applied semiautomatically using a hand gun, in which the electrode is fed by a coil, or an automatic form that includes automated equipment or robots. The advantages and disadvantages of the GMAW welding process applied in a manual and automated way were commented. The mechanical properties of the materials to which said welding can be applied were investigated; The materials with which this type of welding can be worked are the high strength materials, which are used in the automotive industry, for the forming of sheet metal. To know the properties of the material, destructive tests were carried out on the test material to be used, as well as the mechanical properties of the welding.


Sign in / Sign up

Export Citation Format

Share Document