Open loop and closed loop analysis of LLC resonant converter operating at constant switching frequency by interleaving technique

Author(s):  
M. Dhivyyaa Dharshinii ◽  
K. Pradeepa ◽  
S. R. Akshaya ◽  
S. Hema
Author(s):  
Hitesh Indurthy

Abstract: A dual bridge (DB) LLC resonant converter for dc-dc conversion with closed loop is proposed in the system. The model is capable of delivering very low voltage, with a variable input dc fluctuations in the source side. The new PWM technique used helps the bridge output robust. The proposed model works only in 4 modes of operation. DB LLC converter uses different phase shift for each individual switches with different duty ratios. The model is simulated with 160V/200V DC input and 24V output with 20A i.e. 480W is provided to verify the operation. Keywords: Dual Bridge, LLC resonant converter, Closed loop operation, Boost converter.


2020 ◽  
pp. 99-107
Author(s):  
Erdal Sehirli

This paper presents the comparison of LED driver topologies that include SEPIC, CUK and FLYBACK DC-DC converters. Both topologies are designed for 8W power and operated in discontinuous conduction mode (DCM) with 88 kHz switching frequency. Furthermore, inductors of SEPIC and CUK converters are wounded as coupled. Applications are realized by using SG3524 integrated circuit for open loop and PIC16F877 microcontroller for closed loop. Besides, ACS712 current sensor used to limit maximum LED current for closed loop applications. Finally, SEPIC, CUK and FLYBACK DC-DC LED drivers are compared with respect to LED current, LED voltage, input voltage and current. Also, advantages and disadvantages of all topologies are concluded.


2018 ◽  
Vol 57 (49) ◽  
pp. 16795-16808
Author(s):  
Julián Cabrera-Ruiz ◽  
César Ramírez-Márquez ◽  
Shinji Hasebe ◽  
Salvador Hernández ◽  
J. Rafael Alcántara Avila

Author(s):  
V. N. Dolov ◽  
V. F. Strelkov ◽  
V. V. Vanyaev ◽  
A. A. Kochnev

Presented by quasi-resonant converter of a pulse of microwave power transmission device lamp radar with pulse output voltage regulation. The features of his work are given a mathematical model, the external characteristics and some simulation results in open-loop and closed-loop output voltage system.


2020 ◽  
Author(s):  
Jiangtao Xu ◽  
Yun Wei ◽  
Xin Cheng ◽  
Hua Yang ◽  
Hongxiang Xue ◽  
...  

Circuit World ◽  
2019 ◽  
Vol 45 (4) ◽  
pp. 181-188
Author(s):  
Zhenmin Wang ◽  
Wenyan Fan ◽  
Fangxiang Xie ◽  
Chunxian Ye

Purpose This paper aims to present an 8 kW LLC resonant converter designed for plasma power supply with higher efficiency and lighter structure. It presents how to solve the problems of large volume and weight, low performance and low efficiency of traditional plasma power supply. Design/methodology/approach At present, conventional silicon (Si) power devices’ switching performance is close to the theoretical limit determined by its material properties; the next-generation silicon carbide (SiC) power devices with outstanding advantages can be used to optimal design. This 8 kW LLC resonant converter prototype with silicon carbide (SiC) power devices with a modulated switching frequency ranges from 100  to 400 kHz. Findings The experimental results show that the topology, switching loss, rectifier loss, transformer loss and drive circuit of the full-bridge LLC silicon carbide (SiC) plasma power supply can be optimized. Research limitations/implications Due to the selected research object (plasma power supply), this study may have limited universality. The authors encourage the study of high frequency resonant converters for other applications such as argon arc welding. Practical implications This study provides a practical application for users to improve the quality of plasma welding. Originality/value The experimental results show that the full-bridge LLC silicon carbide (SiC) plasma power supply is preferred in operation under conditions of high frequency and high voltage. And its efficiency can reach 98%, making it lighter, more compact and more efficient than previous designs.


2019 ◽  
Vol 25 (3) ◽  
pp. 4-9
Author(s):  
Michal Frivaldsky ◽  
Jan Morgos ◽  
Andrej Kanovsky

Dual interleaved LLC resonant converter with half bridge topology of main circuit characterized by high switching frequency (500 kHz), high power density (60 W/inch3) and high efficiency (above 96 %) over entire operational range (20 %–100 %) is described. Focus was given on the practical design of power converter, which will be able to fulfil requirements on wide load range operation characterized by upcoming normative. Since proposed topology is based on dual interleaved LLC converter, the resonant component´s critical tolerance was also investigated to secure reliable and optimal operational point. Consequently, proposals for elimination of intolerance negative impact are also described. The results of theoretical analysis were verified directly through experimental measurements. Experimental results are finally compared with upcoming industrial standard 80 Plus Titanium.


2019 ◽  
Vol 8 (3) ◽  
pp. 8871-8874

This Work presents the Design and Analysis of LCC Resonant Converter for Power Supplies which are used for high Voltages. LCC Resonant Converter was designed and simulated in both Open loop and closed loop in Matlab Simulink. The Closed loop was found to have a lesser steady state error as compared with that of the open loop. The Stress across the Switches was measured for different input voltages and found that it is linearly proportional to the input voltage. Also the Output Voltage was plotted against different load conditions.


Sign in / Sign up

Export Citation Format

Share Document