Characterization of active channel processing by PIMR

Author(s):  
M.C. Heimlich ◽  
R.J. Gutmanna ◽  
L. Kerber ◽  
S. Moreau ◽  
J. Vaughan
Keyword(s):  
2021 ◽  
Vol 3 (9) ◽  
pp. 4189-4196
Author(s):  
Hyun-Joo Ryoo ◽  
Hyun-Min Ahn ◽  
Nak-Jin Seong ◽  
Kyu-Jeong Choi ◽  
Chi-Sun Hwang ◽  
...  

2001 ◽  
Vol 685 ◽  
Author(s):  
Horng-Chih Lin ◽  
Tiao-Yuan Huang ◽  
Kuan-Lin Yeh ◽  
Rou-Gu Huang ◽  
Meng-Fan Wang

AbstractPoly-Si Schottky-barrier thin-film transistors (SB-TFTs) were fabricated and characterized. In this study, SB-TFTs were first fabricated by using a conventional sidewall spacer to isolate the gate and S/D regions during salicidation. However, it was found that these SB-TFTs depict very poor on/off current ratio (<103) as well as severe GIDL (gate-induced drain leakage)-like leakage current. To overcome these shortcomings, a novel SB-TFT structure is also fabricated in this study to improve the device performance. The new device consists of a field-induced-drain region (FID), which is an offset drain region controlled by a metal field-plate lying on top of the passivation oxide. The FID region is sandwiched between the silicided drain and the active channel region. Carrier types and the conductivity of the transistor are controlled by the metal field-plate. Since the metal field plate is formed simultaneously with the regular metal patterning, no additional processing steps are required. Our results show that the new device can significantly improve the on/off current ratio to over 106 for both p- and n-channel operations, while effectively eliminating the GIDL-like leakage.


1997 ◽  
Vol 78 (5) ◽  
pp. 2616-2630 ◽  
Author(s):  
Robert M. Schmich ◽  
Michael I. Miller

Schmich, Robert M. and Michael I. Miller. Stochastic threshold characterization of the intensity of active channel dynamical action potential generation. J. Neurophysiol. 78: 2616–2630, 1997. This paper develops a stochastic intensity description for action potential generation formulated in terms of stochastic processes, which are direct analogues of the physiological processes of the pre- and postsynaptic complex of the cochlear nerve: 1) neurotransmitter release is modeled as an inhomogeneous Poisson counting process with release intensity μ t , 2) the excitatory postsynaptic conductance (EPSC) process is modeled as a marked, linearly filtered Poisson process resulting from the linear superposition of standard shaped postsynaptic conductances of size G, and 3) action potential generation is modeled as resulting from the EPSC exceeding a random threshold determined by active channel dynamics of the Hodgkin-Huxley type. The random threshold is defined to be the least upper bound in the size of a standard-shaped neurotransmitter release injected at time t given the previous action potential time and the number of releases occurring in a short preconditioning time increment. The action potential process is modeled as a self-exciting point process with stochastic intensity resulting from the probability that the random threshold process crosses the threshold in some small time increment that is a function of time since previous action potential, release intensity, and the probability that a single synaptic event exceeds the stochastic threshold. The stochastic intensity model is consistent with a direct simulation of the nonlinear Hodgkin-Huxley differential equations over a variety of parameters for the vesicle release intensity, vesicle size, vesicle duration, and temperatures. Results are presented showing that the regularity properties seen in the vestibular primary afferent in the lizard, Calotes versicolor, associated with a slow-to-activate potassium channel resulting in a long afterhyperpolarization can be accommodated directly by the stochastic intensity description. The stimulus dependence of the model is attributed to synaptic transmission and the probabilistic nature to the threshold conductance process, which is dependent upon the EPSC process. The stochastic intensity is seen to have a form consistent with the phenomenologically based Siebert-Gaumond model, a stimulus-related function of time multiplied by a refractory-related function of time since previous action potential.


2014 ◽  
Vol 115 (2) ◽  
pp. 023108 ◽  
Author(s):  
I. Chiamenti ◽  
F. Bonfigli ◽  
A. S. L. Gomes ◽  
F. Michelotti ◽  
R. M. Montereali ◽  
...  

Author(s):  
B. L. Soloff ◽  
T. A. Rado

Mycobacteriophage R1 was originally isolated from a lysogenic culture of M. butyricum. The virus was propagated on a leucine-requiring derivative of M. smegmatis, 607 leu−, isolated by nitrosoguanidine mutagenesis of typestrain ATCC 607. Growth was accomplished in a minimal medium containing glycerol and glucose as carbon source and enriched by the addition of 80 μg/ ml L-leucine. Bacteria in early logarithmic growth phase were infected with virus at a multiplicity of 5, and incubated with aeration for 8 hours. The partially lysed suspension was diluted 1:10 in growth medium and incubated for a further 8 hours. This permitted stationary phase cells to re-enter logarithmic growth and resulted in complete lysis of the culture.


Author(s):  
A.R. Pelton ◽  
A.F. Marshall ◽  
Y.S. Lee

Amorphous materials are of current interest due to their desirable mechanical, electrical and magnetic properties. Furthermore, crystallizing amorphous alloys provides an avenue for discerning sequential and competitive phases thus allowing access to otherwise inaccessible crystalline structures. Previous studies have shown the benefits of using AEM to determine crystal structures and compositions of partially crystallized alloys. The present paper will discuss the AEM characterization of crystallized Cu-Ti and Ni-Ti amorphous films.Cu60Ti40: The amorphous alloy Cu60Ti40, when continuously heated, forms a simple intermediate, macrocrystalline phase which then transforms to the ordered, equilibrium Cu3Ti2 phase. However, contrary to what one would expect from kinetic considerations, isothermal annealing below the isochronal crystallization temperature results in direct nucleation and growth of Cu3Ti2 from the amorphous matrix.


Author(s):  
B. H. Kear ◽  
J. M. Oblak

A nickel-base superalloy is essentially a Ni/Cr solid solution hardened by additions of Al (Ti, Nb, etc.) to precipitate a coherent, ordered phase. In most commercial alloy systems, e.g. B-1900, IN-100 and Mar-M200, the stable precipitate is Ni3 (Al,Ti) γ′, with an LI2structure. In A lloy 901 the normal precipitate is metastable Nis Ti3 γ′ ; the stable phase is a hexagonal Do2 4 structure. In Alloy 718 the strengthening precipitate is metastable γ″, which has a body-centered tetragonal D022 structure.Precipitate MorphologyIn most systems the ordered γ′ phase forms by a continuous precipitation re-action, which gives rise to a uniform intragranular dispersion of precipitate particles. For zero γ/γ′ misfit, the γ′ precipitates assume a spheroidal.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


Author(s):  
D. F. Blake ◽  
L. F. Allard ◽  
D. R. Peacor

Echinodermata is a phylum of marine invertebrates which has been extant since Cambrian time (c.a. 500 m.y. before the present). Modern examples of echinoderms include sea urchins, sea stars, and sea lilies (crinoids). The endoskeletons of echinoderms are composed of plates or ossicles (Fig. 1) which are with few exceptions, porous, single crystals of high-magnesian calcite. Despite their single crystal nature, fracture surfaces do not exhibit the near-perfect {10.4} cleavage characteristic of inorganic calcite. This paradoxical mix of biogenic and inorganic features has prompted much recent work on echinoderm skeletal crystallography. Furthermore, fossil echinoderm hard parts comprise a volumetrically significant portion of some marine limestones sequences. The ultrastructural and microchemical characterization of modern skeletal material should lend insight into: 1). The nature of the biogenic processes involved, for example, the relationship of Mg heterogeneity to morphological and structural features in modern echinoderm material, and 2). The nature of the diagenetic changes undergone by their ancient, fossilized counterparts. In this study, high resolution TEM (HRTEM), high voltage TEM (HVTEM), and STEM microanalysis are used to characterize tha ultrastructural and microchemical composition of skeletal elements of the modern crinoid Neocrinus blakei.


Sign in / Sign up

Export Citation Format

Share Document