scholarly journals Effect of dietary components on the gut microbiota of aquatic animals. A never‐ending story?

2015 ◽  
Vol 22 (2) ◽  
pp. 219-282 ◽  
Author(s):  
E. Ringø ◽  
Z. Zhou ◽  
J.L.G. Vecino ◽  
S. Wadsworth ◽  
J. Romero ◽  
...  
2019 ◽  
Vol 26 (19) ◽  
pp. 3567-3583 ◽  
Author(s):  
Maria De Angelis ◽  
Gabriella Garruti ◽  
Fabio Minervini ◽  
Leonilde Bonfrate ◽  
Piero Portincasa ◽  
...  

Gut microbiota, the largest symbiont community hosted in human organism, is emerging as a pivotal player in the relationship between dietary habits and health. Oral and, especially, intestinal microbes metabolize dietary components, affecting human health by producing harmful or beneficial metabolites, which are involved in the incidence and progression of several intestinal related and non-related diseases. Habitual diet (Western, Agrarian and Mediterranean omnivore diets, vegetarian, vegan and gluten-free diets) drives the composition of the gut microbiota and metabolome. Within the dietary components, polymers (mainly fibers, proteins, fat and polyphenols) that are not hydrolyzed by human enzymes seem to be the main leads of the metabolic pathways of gut microbiota, which in turn directly influence the human metabolome. Specific relationships between diet and microbes, microbes and metabolites, microbes and immune functions and microbes and/or their metabolites and some human diseases are being established. Dietary treatments with fibers are the most effective to benefit the metabolome profile, by improving the synthesis of short chain fatty acids and decreasing the level of molecules, such as p-cresyl sulfate, indoxyl sulfate and trimethylamine N-oxide, involved in disease state. Based on the axis diet-microbiota-health, this review aims at describing the most recent knowledge oriented towards a profitable use of diet to provide benefits to human health, both directly and indirectly, through the activity of gut microbiota.


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2428
Author(s):  
Małgorzata Guz ◽  
Witold Jeleniewicz ◽  
Anna Malm ◽  
Izabela Korona-Glowniak

A still growing interest between human nutrition in relation to health and disease states can be observed. Dietary components shape the composition of microbiota colonizing our gastrointestinal tract which play a vital role in maintaining human health. There is a strong evidence that diet, gut microbiota and their metabolites significantly influence our epigenome, particularly through the modulation of microRNAs. These group of small non-coding RNAs maintain cellular homeostasis, however any changes leading to impaired expression of miRNAs contribute to the development of different pathologies, including neoplastic diseases. Imbalance of intestinal microbiota due to diet is primary associated with the development of colorectal cancer as well as other types of cancers. In the present work we summarize current knowledge with particular emphasis on diet-microbiota-miRNAs axis and its relation to the development of colorectal cancer.


Foods ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1045
Author(s):  
Yao Guo ◽  
Xiaohan Bian ◽  
Jiali Liu ◽  
Ming Zhu ◽  
Lin Li ◽  
...  

Trillions of bacteria reside in the human gut and they metabolize dietary substances to obtain nutrients and energy while producing metabolites. Therefore, different dietary components could affect human health in various ways through microbial metabolism. Many such metabolites have been shown to affect human physiological activities, including short-chain fatty acids metabolized from carbohydrates; indole, kynurenic acid and para-cresol, metabolized from amino acids; conjugated linoleic acid and linoleic acid, metabolized from lipids. Here, we review the features of these metabolites and summarize the possible molecular mechanisms of their metabolisms by gut microbiota. We discuss the potential roles of these metabolites in health and diseases, and the interactions between host metabolism and the gut microbiota. We also show some of the major dietary patterns around the world and hope this review can provide insights into our eating habits and improve consumers’ health conditions.


2019 ◽  
Vol 10 (6) ◽  
pp. 979-998 ◽  
Author(s):  
Riley L Hughes ◽  
Mary E Kable ◽  
Maria Marco ◽  
Nancy L Keim

ABSTRACT The gut microbiota is increasingly implicated in the health and metabolism of its human host. The host's diet is a major component influencing the composition and function of the gut microbiota, and mounting evidence suggests that the composition and function of the gut microbiota influence the host's metabolic response to diet. This effect of the gut microbiota on personalized dietary response is a growing focus of precision nutrition research and may inform the effort to tailor dietary advice to the individual. Because the gut microbiota has been shown to be malleable to some extent, it may also allow for therapeutic alterations of the gut microbiota in order to alter response to certain dietary components. This article is the second in a 2-part review of the current research in the field of precision nutrition incorporating the gut microbiota into studies investigating interindividual variability in response to diet. Part I reviews the methods used by researchers to design and carry out such studies as well as analyze the results subsequently obtained. Part II reviews the findings of these studies and discusses the gaps in our current knowledge and directions for future research. The studies reviewed provide the current understanding in this field of research and a foundation from which we may build, utilizing and expanding upon the methods and results they present to inform future studies.


2022 ◽  
Vol 423 ◽  
pp. 127094
Author(s):  
Weixin Li ◽  
Xiaofeng Chen ◽  
Minqian Li ◽  
Zeming Cai ◽  
Han Gong ◽  
...  

Aquaculture ◽  
2016 ◽  
Vol 454 ◽  
pp. 72-80 ◽  
Author(s):  
Meiling Zhang ◽  
Yuhong Sun ◽  
Yukun Liu ◽  
Fang Qiao ◽  
Liqiao Chen ◽  
...  

2018 ◽  
Vol 84 (18) ◽  
Author(s):  
Claudia Leong ◽  
Jillian J. Haszard ◽  
Blair Lawley ◽  
Anna Otal ◽  
Rachael W. Taylor ◽  
...  

ABSTRACT The introduction of “solids” (i.e., complementary foods) to the milk-only diet in early infancy affects the development of the gut microbiota. The aim of this study was to determine whether a “baby-led” approach to complementary feeding that encourages the early introduction of an adult-type diet results in alterations of the gut microbiota composition compared to traditional spoon-feeding. The Baby-Led Introduction to SolidS (BLISS) study randomized 206 infants to BLISS (a modified version of baby-led weaning [BLW], the introduction of solids at 6 months of age, followed by self-feeding of family foods) or control (traditional spoon-feeding of purées) groups. Fecal microbiotas and 3-day weighed-diet records were analyzed for a subset of 74 infants at 7 and 12 months of age. The composition of the microbiota was determined by sequencing of 16S rRNA genes amplified by PCR from bulk DNA extracted from feces. Diet records were used to estimate food and dietary fiber intake. Alpha diversity (number of operational taxonomic units [OTUs]) was significantly lower in BLISS infants at 12 months of age (difference [95% confidence interval {CI}] of 31 OTUs [3.4 to 58.5]; P = 0.028), and while there were no significant differences between control and BLISS infants in relative abundances of Bifidobacteriaceae, Enterobacteriaceae, Veillonellaceae, Bacteroidaceae, Erysipelotrichaceae, Lachnospiraceae, or Ruminococcaceae at 7 or 12 months of age, OTUs representing the genus Roseburia were less prevalent in BLISS microbiotas at 12 months. Mediation models demonstrated that the intake of “fruit and vegetables” and “dietary fiber” explained 29% and 25%, respectively, of the relationship between group (BLISS versus control) and alpha diversity. IMPORTANCE The introduction of solid foods (complementary feeding or weaning) to infants leads to more-complex compositions of microbial communities (microbiota or microbiome) in the gut. In baby-led weaning (BLW), infants are given only finger foods that they can pick up and feed themselves—there is no parental spoon-feeding of puréed baby foods—and infants are encouraged to eat family meals. BLW is a new approach to infant feeding that is increasing in popularity in the United States, New Zealand, the United Kingdom, and Canada. We used mediation modeling, commonly used in health research but not in microbiota studies until now, to identify particular dietary components that affected the development of the infant gut microbiota.


Nutrients ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1468 ◽  
Author(s):  
Mills ◽  
Lane ◽  
Smith ◽  
Grimaldi ◽  
Ross ◽  
...  

Modulation of the human gut microbiota through probiotics, prebiotics and dietary fibre are recognised strategies to improve health and prevent disease. Yet we are only beginning to understand the impact of these interventions on the gut microbiota and the physiological consequences for the human host, thus forging the way towards evidence-based scientific validation. However, in many studies a percentage of participants can be defined as ‘non-responders’ and scientists are beginning to unravel what differentiates these from ‘responders;’ and it is now clear that an individual’s baseline microbiota can influence an individual’s response. Thus, microbiome composition can potentially serve as a biomarker to predict responsiveness to interventions, diets and dietary components enabling greater opportunities for its use towards disease prevention and health promotion. In Part I of this two-part review, we reviewed the current state of the science in terms of the gut microbiota and the role of diet and dietary components in shaping it and subsequent consequences for human health. In Part II, we examine the efficacy of gut-microbiota modulating therapies at different life stages and their potential to aid in the management of undernutrition and overnutrition. Given the significance of an individual’s gut microbiota, we investigate the feasibility of microbiome testing and we discuss guidelines for evaluating the scientific validity of evidence for providing personalised microbiome-based dietary advice. Overall, this review highlights the potential value of the microbiome to prevent disease and maintain or promote health and in doing so, paves the pathway towards commercialisation.


Pathogens ◽  
2014 ◽  
Vol 3 (1) ◽  
pp. 187-210 ◽  
Author(s):  
Haoyu Liu ◽  
Johan Dicksved ◽  
Torbjörn Lundh ◽  
Jan Lindberg

Sign in / Sign up

Export Citation Format

Share Document