Low-Temperature Fine-Grained Alumina?Aluminum Titanate Composites Produced from a Titania-Coated Alumina Precursor

2007 ◽  
Vol 90 (10) ◽  
pp. 3091-3094 ◽  
Author(s):  
Jayasankar Mani ◽  
Solaiappan Ananthakumar ◽  
Poothayil Mukundan ◽  
Krishna Gopakumar Warrier
Alloy Digest ◽  
1983 ◽  
Vol 32 (4) ◽  

Abstract TRI-MARK TM-811N2 is a flux-cored welding electrode for all position semiautomatic arc welding. It is designed to weld 2-3% nickel steels for applications requiring good toughness at subzero temperatures; in addition, it is used to weld various other high-strength low-alloy steels and various fine-grained steels with low-temperature toughness. Tri-Mark TM-811N2 is used to deposit typically 2.35% nickel steel weld metal with good low-temperature impact properties. It is used for shipbuilding, oil rigs and similar structures. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as heat treating, machining, and joining. Filing Code: SA-389. Producer or source: Tri-Mark Inc..


2013 ◽  
Vol 745-746 ◽  
pp. 673-678 ◽  
Author(s):  
Wei Hui Jiang ◽  
Zhi Fang Xu ◽  
Jian Min Liu ◽  
Qing Xia Zhu ◽  
Quan Zhang

Aluminum titanate (Al2TiO5) powder has been synthesized at low temperature via nonhydrolytic sol-gel method by using aluminum powder as aluminum source, titanium tetrachloride as titanium source, anhydrous ethanol as oxygen donor with different catalysts. The phase transformation of aluminum titanate xerogel powder during heat treatment and the influence of the mixing orders of raw materials, catalyst kinds on the synthesis of aluminum titanate were investigated by means of differential-thermal analysis (DTA-TG), X-ray diffraction (XRD), transmission electron microscope (TEM). The results indicated that aluminum titanate powder was easily synthesized at 750 °C by using AlCl3 as catalyst with a mixing order of adding TiCl4 before AlCl3 into aluminum alcohol mixture. The catalytic order of the different catalysts in the preparation process of aluminum titanate is: FeCl3> AlCl3> MgCl2. The catalyst promoted the activation of metal aluminum powder and played a major role in the synthesis of aluminum titanate powder at low temperature via nonhydrolytic sol-gel method.


2021 ◽  
Vol 1024 ◽  
pp. 103-109
Author(s):  
Shunsuke Makimura ◽  
Hiroaki Kurishita ◽  
Koichi Niikura ◽  
Hun Chea Jung ◽  
Hiroyuki Ishizaki ◽  
...  

Tungsten (W) is a principal candidate as target material because of its high density and extremely high melting point. W inherently has a critical disadvantage of its brittleness at around room temperature (low temperature brittleness), recrystallization embrittlement, and irradiation embrittlement. TFGR (Toughened, Fine Grained, Recrystallized) W-1.1%TiC has been considered as a realized solution to the embrittlement problems. We started to fabricate TFGR W-1.1%TiC in 2016 under collaboration between KEK and Metal Technology Co. LTD (MTC). The TFGR W-1.1%TiC samples were successfully fabricated in June, 2018. As a result, the specimen showed slight bend ductility and 2.6 GPa of fracture strength.


Minerals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 622
Author(s):  
Valeriy Maslennikov ◽  
Georgy Cherkashov ◽  
Dmitry Artemyev ◽  
Anna Firstova ◽  
Ross Large ◽  
...  

The massive sulfide ores of the Pobeda hydrothermal fields are grouped into five main mineral microfacies: (1) isocubanite-pyrite, (2) pyrite-wurtzite-isocubanite, (3) pyrite with minor isocubanite and wurtzite-sphalerite microinclusions, (4) pyrite-rich with framboidal pyrite, and (5) marcasite-pyrite. This sequence reflects the transition from feeder zone facies to seafloor diffuser facies. Spongy, framboidal, and fine-grained pyrite varieties replaced pyrrhotite, greigite, and mackinawite “precursors”. The later coarse and fine banding oscillatory-zoned pyrite and marcasite crystals are overgrown or replaced by unzoned subhedral and euhedral pyrite. In the microfacies range, the amount of isocubanite, wurtzite, unzoned euhedral pyrite decreases versus an increasing portion of framboidal, fine-grained, and spongy pyrite and also marcasite and its colloform and radial varieties. The trace element characteristics of massive sulfides of Pobeda seafloor massive sulfide (SMS) deposit are subdivided into four associations: (1) high temperature—Cu, Se, Te, Bi, Co, and Ni; (2) mid temperature—Zn, As, Sb, and Sn; (3) low temperature—Pb, Sb, Ag, Bi, Au, Tl, and Mn; and (4) seawater—U, V, Mo, and Ni. The high contents of Cu, Co, Se, Bi, Te, and values of Co/Ni ratios decrease in the range from unzoned euhedral pyrite to oscillatory-zoned and framboidal pyrite, as well as to colloform and crystalline marcasite. The trend of Co/Ni values indicates a change from hydrothermal to hydrothermal-diagenetic crystallization of the pyrite. The concentrations of Zn, As, Sb, Pb, Ag, and Tl, as commonly observed in pyrite formed from mid- and low-temperature fluids, decline with increasing crystal size of pyrite and marcasite. Coarse oscillatory-zoned pyrite crystals contain elevated Mn compared to unzoned euhedral varieties. Framboidal pyrite hosts maximum concentrations of Mo, U, and V probably derived from ocean water mixed with hydrothermal fluids. In the Pobeda SMS deposit, the position of microfacies changes from the black smoker feeder zone at the base of the ore body, to seafloor marcasite-pyrite from diffuser fragments in sulfide breccias. We suggest that the temperatures of mineralization decreased in the same direction and determined the zonal character of deposit.


Minerals ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 34 ◽  
Author(s):  
Montgarri Castillo-Oliver ◽  
Joan Carles Melgarejo ◽  
Lisard Torró ◽  
Cristina Villanova-de-Benavent ◽  
Marc Campeny ◽  
...  

The Eureka deposit in Castell-estaó in the Catalan Pyrenees is a Cu–U–V deposit, hosted by Triassic red-bed sandstones, and classified here as a low-temperature, sandstone-hosted stratabound metamorphite U deposit. The main mineralisation is stratabound, related to coal-bearing units and produced during the Alpine deformation by migration of hydrothermal fluids. In this stage, the original sedimentary and diagenetic components (quartz and calcite, micas, hematite and locally apatite) were replaced by a complex sequence of roscoelite, fine-grained REE phosphates, sulphides and Ni–Co arsenides and sulpharsenides, Ag–Pb selenides, bismuth phases, sulphosalts and uraninite. The black shales of the Silurian sediments underlying the deposit and the nearby Carboniferous volcanoclastic rocks are interpreted as the source of the redox-sensitive elements concentrated in Eureka. The sulphur source is related to leaching of the evaporitic Keuper facies. The REE transport would be facilitated by SO4-rich solutions. The reduction of these solutions by interaction with organic matter resulted in the widespread precipitation of REE and redox-sensitive elements, including many critical metals (V, Bi, Sb, Co), whereas barite precipitated in the oxidized domains. The occurrence of similar enrichments in critical elements can be expected in other similar large uranium deposits, which could be a source of these elements as by-products.


1998 ◽  
Vol 37 (Part 1, No. 6A) ◽  
pp. 3481-3485 ◽  
Author(s):  
Nobuhito Ogata ◽  
Masaya Nagata ◽  
Kazuya Ishihara ◽  
Hitoshi Urashima ◽  
Akira Okutoh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document