scholarly journals Influence of sintering temperature on the pore structure and apatite formation of a sol‐gel‐derived bioactive glass

Author(s):  
Bo Lei ◽  
Xiaofeng Chen ◽  
Yingjun Wang ◽  
Naru Zhao ◽  
Chang Du ◽  
...  
2010 ◽  
Vol 93 (1) ◽  
pp. 32-35 ◽  
Author(s):  
Bo Lei ◽  
Xiaofeng Chen ◽  
Yingjun Wang ◽  
Naru Zhao ◽  
Chang Du ◽  
...  

2014 ◽  
Vol 925 ◽  
pp. 82-83
Author(s):  
Mojtaba Nasr-Esfahani ◽  
Marzieh Omid-Bakhtiari ◽  
Muhamad Kashif

In order to widen the application range of bioactive glass (BG), we prepared a bioactive glass as a composite matrix, strengthened by titania nanoparticles. The prepared composites had different amounts of both bioactive glass (49S) and titania in the weight percents of 1:3, 1:1 and 3:1, respectively. Bioactive glass sols (49S) in the system (SiO2CaOP2O5) were prepared following the solgel technique, then a solution of 2 wt% methylcellulose was added and stirred at room temperature. Precalcinated TiO2 nanopowder was dispersed in the sol and the prepared mixture was fired at 600 °C. The inhomogeneity problem in preparation of composite powder was overcome by using methylcellulose (MC) as a dispersant. The nanostructure composites were characterized using X-ray diffraction (XRD) and Fourier transforms infrared spectroscopy (FT-IR). The microstructure of the surfaces of the different composites was examined by scanning electron microanalysis (SEM) to verify the apatite formation. The results led us to the conclusion that the addition of MC reinforces the composites and increases the formation of an apatite layer in the presence of BG and titania content.


2012 ◽  
Vol 05 ◽  
pp. 510-518
Author(s):  
MARYAM MAZROOEI SEBDANI ◽  
MOHAMMADHOSSEIN FATHI

In spite of attractive bioactivity of bioactive ceramics i.e. hydroxyapatite and bioactive glasses, their poor mechanical properties have restricted their clinical applications. To overcome these limitations, an alternative approach suggested is preparation a composite including these bioactive ceramics with others. It is expected that a ceramic reinforcement with reduced grain size below 100 nm promotes theirs. The aim of this work was fabrication and characterization of hydroxyapatite-forsterite-bioglass composite nanopowder. Novel hydroxyapatite-forsterite-bioglass composite nanopowder was synthesized by incorporation of the forsterite and bioactive glass in hydroxyapatite matrix via a sol-gel process. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and fourier transform infrared (FTIR) spectroscopy techniques were utilized in order to evaluate the phase composition, agglomerates size distribution, morphology and particle size and functional groups of synthesized. The effects of sintering temperature and time were also investigated. Results showed that the appropriate temperature for calcination was 600°C and the particle size of composite nanopowder was about 60-70nm. The decomposition of hydroxyapatite was increased with the increase of the sintering temperature and sintering time. Obtained results indicate that prepared composite nanopowder could be a good candidate for medical applications.


2013 ◽  
Vol 19 (2) ◽  
pp. 231-239 ◽  
Author(s):  
Nima Nabian ◽  
Maedeh Delavar ◽  
Mahmood Rabiee ◽  
Mohsen Jahanshahi

The paper reports the first attempt at changing cooling treatment of synthesizing method in order to investigate its effect on the physical properties of sol-gel derived nano bioactive glass-ceramic in the system 58SiO2-33CaO-9P2O5 (wt.%). We hypothesized that the method of cooling may affect the properties of nano bioactive glass-ceramic. To test this hypothesis, two different method of cooling treatment was applied after calcinations in synthesizing method. Both quenched and unquenched nano bioactive glass-ceramics were soaked in Ringer?s solution with bovine serum albumin (BSA) for bioactivity evaluation. The obtained samples were analyzed for their composition, crystalinity and morphology through X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), surface electron microscope (SEM) and transmission electron microscope (TEM). The SEM images showed that the morphology of nano bioactive glass-ceramics was completely changed by quenching process. Results of in vitro bioactivity evaluation revealed that the unquenched attains faster apatite formation ability than the quenched sample. Other properties of these two morphologically different nano bioactive glass-ceramics were strongly discussed.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Viviane Gomide ◽  
Alessandra Arcoverde Cavalcanti Zonari ◽  
Natalia Martins Breyner ◽  
Alfredo Miranda de Goes ◽  
Marivalda M. Pereira

Bioactive glass/polymer hybrids are promising materials for biomedical applications because they combine the bioactivity of bioceramics with the flexibility of polymers. These advantages may be used in porous scaffolds for tissue-engineering applications. In previous works, hybrid foams bioactive glass/polyvinyl alcohol (PVA) were prepared by the sol-gel process. The hybrid foam 50% PVA/50% bioactive glass was chosen in the composition range studied as the scaffold with better compromise in terms of pore structure and mechanical behavior. The aim of the present study was to evaluate the adhesion, viability, and growth behavior of human-adipose-tissue-derived stem cells on bioactive glass/PVA foams in vitro and their potential as scaffold for application in bone-tissue engineering. The pore structure of the hybrid samples used in the study was analyzed by microcomputed tomography, showing a modal pore diameter of 284 μm and modal interconnect diameter of 138 μm. We found that cells are capable of adhesion, proliferation, growth, and ECM production on the scaffolds tested. The results show that the hybrid bioactive glass/PVA is a promising material for bone repair, providing a good environment for the adhesion and proliferation of human-adipose-tissue-derived stem cells in vitro.


2020 ◽  
Vol 44 (48) ◽  
pp. 21026-21037
Author(s):  
D. Durgalakshmi ◽  
R. Ajay Rakkesh ◽  
P. Aruna ◽  
Singaravelu Ganesan ◽  
S. Balakumar

In bioactive glass synthesis by sol–gel method, HCl catalyst induces biocompatible wollastonite crystallization and supports higher apatite formation.


2005 ◽  
Vol 284-286 ◽  
pp. 589-592 ◽  
Author(s):  
Marivalda Pereira ◽  
Najat Al-Saffar ◽  
Jamuna Selvakumaran ◽  
Larry L. Hench

Hybrid bioactive glass-polyvinyl alcohol foams for use as scaffolds in tissue engineering were developed through the sol-gel route. Hybrids produced by this route present a high acidic character due to the catalysts added during processing and may also contain residual organics after the drying step. Therefore, an additional cleaning step is necessary to produce biocompatible materials. In this study hybrid PVA/bioactive glass foams were cleaned using various procedures and cytotoxicity evaluation was conducted. All the cleaning methods used increased the cell viability levels compared to samples not subjected to a cleaning procedure. The most effective cleaning procedure used was the immersion in NH4OH solution. The cleaning procedure changed the composition and pore structure of the final material.


2011 ◽  
Vol 493-494 ◽  
pp. 43-48 ◽  
Author(s):  
Ourania Menti Goudouri ◽  
Maria Perissi ◽  
Eleni Theodosoglou ◽  
Lambrini Papadopoulou ◽  
Xanthippi Chatzistavrou ◽  
...  

In most biphasic composite systems consisting of sol-gel derived bioactive glass and a second system that is usually used as a reinforcing agent, thorough stirring is necessary to prevent the precipitation of the grains of the second system. Consequently, the aim of this work is to investigate the impact of various stirring rates on the crystallinity and bioactivity of a bioactive glass in the system 58S. Sol-gel-derived bioactive glass (58S) was produced as described in literature. During the gelation, stirring rates of 0, 200, 400, 600 and 800 rpms were applied producing, respectively, the corresponding glass powders. The in vitro bioactivity of the powders was tested in Simulated Body Fluid (SBF) for various immersion times, while the solution was renewed after 6h, 24h and then every 2 days. Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and X-ray Diffractometry (XRD) were used to characterize all materials before and after immersion in SBF solution. FTIR and XRD measurements of all powders revealed mainly the formation of an amorphous glass, while the main crystalline phase was identified to be Ca2SiO4. After immersion in SBF solution for 12h, SEM microphotographs revealed apatite formation on the surface of all samples, while FTIR and XRD confirmed the aforementioned findings. Furthermore, since EDS analysis proved a mean molar Ca/P ratio of about1.7 after 6 days of immersion of all samples- besides those stirred at 400 and 600rpm- it can be assumed that a thick apatite layer was formed covering the whole surface.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Shirong Ni ◽  
Ruilin Du ◽  
Siyu Ni

The aim of this study was to investigate the effect of Na and Ti on thein vitrodegradation and bioactivity in the 58S bioactive glass. The degradation was evaluated through the activation energy of Si ion release from bioactive glasses and the weight loss of bioactive glasses in Tris-HCl buffer solution. Thein vitrobioactivity of the bioactive glasses was investigated by analysis of apatite-formation ability in the simulated body fluid (SBF). The results showed that Na in the 58S glass accelerated the dissolution rate of the glass, whereas Ti in the 58S glass slowed down the rate of glass solubility. Bioactivity tests showed that Na in glass increased the apatite-forming ability in SBF. In contrast, Ti in glass retards the apatite formation at the initial stage of SBF soaking but does not affect the growth of apatite after long periods of soaking.


2010 ◽  
Vol 636-637 ◽  
pp. 31-35 ◽  
Author(s):  
Gisela M. Luz ◽  
João F. Mano

In this study a new P-free system applied to the production of Bioactive Glass Nanoparticles (BG-NPs) is proposed, in order to evaluate the effect of suppressing this component, in the bioactivity capability of the materials. The BG-NPs, based on both ternary (SiO2-CaO-P2O5) and binary (SiO2-CaO) systems, were prepared via a sol-gel method. The morphology and composition of the BG-NPs were studied using FTIR and SEM. New composite membranes were produced combining chitosan and the BG-NPs. The bioactive character of the prepared biodegradable membranes was accessed in vitro by analyzing the capability for apatite formation onto the surface after being immersed in simulated body fluid (SBF). EDX and SEM were used to confirm the bioactivity of the materials.


Sign in / Sign up

Export Citation Format

Share Document