The impact of body size on Aedes [ Stegomyia ] aegypti wingbeat frequency: implications for mosquito identification

Author(s):  
B. L. de Nadai ◽  
A. G. Maletzke ◽  
J. J. Corbi ◽  
G. E. A. P. A. Batista ◽  
M. H. Reiskind
2017 ◽  
Vol 65 (5) ◽  
pp. 292 ◽  
Author(s):  
Bradley P. Smith ◽  
Teghan A. Lucas ◽  
Rachel M. Norris ◽  
Maciej Henneberg

Endocranial volume was measured in a large sample (n = 128) of free-ranging dingoes (Canis dingo) where body size was known. The brain/body size relationship in the dingoes was compared with populations of wild (Family Canidae) and domestic canids (Canis familiaris). Despite a great deal of variation among wild and domestic canids, the brain/body size of dingoes forms a tight cluster within the variation of domestic dogs. Like dogs, free-ranging dingoes have paedomorphic crania; however, dingoes have a larger brain and are more encephalised than most domestic breeds of dog. The dingo’s brain/body size relationship was similar to those of other mesopredators (medium-sized predators that typically prey on smaller animals), including the dhole (Cuon alpinus) and the coyote (Canis latrans). These findings have implications for the antiquity and classification of the dingo, as well as the impact of feralisation on brain size. At the same time, it highlights the difficulty in using brain/body size to distinguish wild and domestic canids.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jun Ying Lim ◽  
Jens-Christian Svenning ◽  
Bastian Göldel ◽  
Søren Faurby ◽  
W. Daniel Kissling

Abstract Mammalian frugivores are critical seed dispersers, but many are under threat of extinction. Futhermore, the impact of past and future defaunation on plant assemblages has yet to be quantified at the global scale. Here, we integrate palm and mammalian frugivore trait and occurrence data and reveal a global positive relationship between fruit size and frugivore body size. Global variation in fruit size is better explained by present-day frugivore assemblages than by Late Pleistocene assemblages, suggesting ecological and evolutionary reorganization after end-Pleistocene extinctions, except in the Neotropics, where some large-fruited palm species may have outlived their main seed dispersers by thousands of years. Our simulations of frugivore extinction over the next 100 years suggest that the impact of defaunation will be highest in the Old World tropics, and an up to 4% assemblage-level decrease in fruit size would be required to maintain the global body size–fruit size relationship. Overall, our results suggest that while some palm species may be able to keep pace with future defaunation through evolutionary changes in fruit size, large-fruited species may be especially vulnerable to continued defaunation.


Author(s):  
Geoffrey M. Hudson ◽  
Yao Lu ◽  
Xiaoke Zhang ◽  
James Hahn ◽  
Johannah E. Zabal ◽  
...  

The creation of personalized avatars that may be morphed to simulate realistic changes in body size is useful when studying self-perception of body size. One drawback is that these methods are resource intensive compared to rating scales that rely upon generalized drawings. Little is known about how body perception ratings compare across different methods, particularly across differing levels of personalized detail in visualizations. This knowledge is essential to inform future decisions about the appropriate tradeoff between personalized realism and resource availability. The current study aimed to determine the impact of varying degrees of personalized realism on self-perception of body size. We explored this topic in young adult women, using a generalized line drawing scale, as well as several types of personalized avatars, including 3D textured images presented in immersive virtual reality (VR). Body perception ratings using generalized line drawings were often higher than responses using individualized visualization methods. While the personalized details seemed to help with identification, there were few differences among the three conditions containing different amounts of individualized realism (e.g., photo-realistic texture). These results suggest that using scales based on personalized texture and limb dimensions are beneficial, although presentation in immersive VR may not be essential.


2003 ◽  
Vol 59 (2) ◽  
pp. 160-171 ◽  
Author(s):  
Felisa A. Smith ◽  
Julio L. Betancourt

AbstractAnimals respond to climatic change by adapting or by altering distributional patterns. How an animal responds is influenced by where it is positioned within its geographic range; the probability of extirpation is increased near range boundaries. Here, we examine the impact of Holocene climatic fluctuations on a small mammalian herbivore, the bushy-tailed woodrat (Neotoma cinerea), at five locations within south central Idaho and northwestern Utah. Previous work demonstrated that woodrats adapt to temperature shifts by altering body size. We focus here on the relationship between body mass, temperature, and location within the geographic range. Body mass is estimated by measuring fossil fecal pellets, a technique validated in earlier work. Overall, we find the predicted phenotypic response to climate change: animals were larger during cold periods, and smaller during warmer episodes. However, we also identify several time periods when changes in environmental temperature exceeded the adaptive flexibility of N. cinerea. A smaller-bodied species, the desert woodrat (N. lepida) apparently invaded lower elevation sites during the mid-Holocene, despite being behaviorally and physically subordinate to N. cinerea. Analysis of contemporary patterns of body size and thermal tolerances for both woodrat species suggests this was because of the greater heat tolerance of N. lepida. The robust spatial relationship between contemporary body size and ambient temperature is used as a proxy to reconstruct local climate during the Holocene.


2018 ◽  
Vol 285 (1873) ◽  
pp. 20172011 ◽  
Author(s):  
Derrick J. E. Groom ◽  
M. Cecilia B. Toledo ◽  
Donald R. Powers ◽  
Bret W. Tobalske ◽  
Kenneth C. Welch

Wing kinematics and morphology are influential upon the aerodynamics of flight. However, there is a lack of studies linking these variables to metabolic costs, particularly in the context of morphological adaptation to body size. Furthermore, the conversion efficiency from chemical energy into movement by the muscles (mechanochemical efficiency) scales with mass in terrestrial quadrupeds, but this scaling relationship has not been demonstrated within flying vertebrates. Positive scaling of efficiency with body size may reduce the metabolic costs of flight for relatively larger species. Here, we assembled a dataset of morphological, kinematic, and metabolic data on hovering hummingbirds to explore the influence of wing morphology, efficiency, and mass on hovering metabolic rate (HMR). We hypothesize that HMR would decline with increasing wing size, after accounting for mass. Furthermore, we hypothesize that efficiency will increase with mass, similarly to other forms of locomotion. We do not find a relationship between relative wing size and HMR, and instead find that the cost of each wingbeat increases hyperallometrically while wingbeat frequency declines with increasing mass. This suggests that increasing wing size is metabolically favourable over cycle frequency with increasing mass. Further benefits are offered to larger hummingbirds owing to the positive scaling of efficiency.


2014 ◽  
Vol 54 (2) ◽  
pp. 111 ◽  
Author(s):  
Andrew D. Moore ◽  
Afshin Ghahramani

Climate change is predicted to reduce the productivity of the broadacre livestock industries across southern Australia; to date there has been no formal evaluation of the potential of genetic improvement in cattle or sheep to ameliorate the impacts of changing climates. We used the GRAZPLAN simulation models to assess selection of five traits of sheep and cattle as adaptation options under the SRES A2 global change scenario. Analysis of the breeding strategies was carried out for 25 representative locations, five livestock enterprises and three future years (2030, 2050, 2070). Uncertainty in future climates was taken into account by considering projected climates from four global circulation models. For three sheep enterprises, breeding for greater fleece growth (at constant body size) was predicted to produce the greatest improvements in forage conversion efficiency, and so it was the most effective genetic adaptation option. For beef cow and steer enterprises, breeding for larger body size was most effective; for beef cows, however, this conclusion relied on per-animal costs (including provision of bulls) remaining stable as body size increases. Increased conception rates proved to be less effective but potentially viable as an adaptation in beef cow and crossbred ewe enterprises. In the southern Australian environments that were analysed, our modelling suggests that breeding for tolerance to heat stress is unlikely to improve the performance of livestock production systems even at 2070. Genetic improvement of livestock was able to recover much less of the impact of climate change on profitability at drier locations where the need for adaptation is likely to be greatest. Combinations of feedbase and livestock genetic adaptations are likely to complement one another as the former alter the amount of forage that can be consumed, while the latter affect the efficiency with which consumed forage is converted to animal products. Climate change impacts on pasture production across southern Australia are likely to have only small effects on methane emissions intensity, as are a range of candidate genetic and feedbase adaptations to climate change; methane emissions per hectare in future climates will therefore be driven mainly by changes in livestock numbers due to alterations in pasture productivity.


2020 ◽  
Author(s):  
Melanie Tietje ◽  
William J. Foster ◽  
Jana Gliwa ◽  
Clara Lembke ◽  
Autumn Pugh ◽  
...  

<p> The impact of mass extinctions on the body sizes of animals has received considerable attention and debate, as to whether the reduced size of post-extinction organisms is due to the selective extinction of large species, absence of large species as a stochastic effect of low-diversity faunas, or a size decrease within surviving genera and species. Here, we investigated the body sizes of bivalves following the end-Permian mass extinction event and show that the shell size increase of bivalve genera was driven by both evolutionary and ecophenotypic responses. First, some genera show significant increases in body size with the evolution of new species. Further, the same genera record significant within-species increases in average and maximum body size into the late Induan, indicating that ecophenotypic changes were also involved on long-term body size trends. These increases are associated with invigorated ocean circulation, improved oxygenation of the seafloor, and probably increased food supply.</p>


2011 ◽  
Vol 278 (1721) ◽  
pp. 3142-3151 ◽  
Author(s):  
Tanya L. Russell ◽  
Dickson W. Lwetoijera ◽  
Bart G. J. Knols ◽  
Willem Takken ◽  
Gerry F. Killeen ◽  
...  

Understanding the endogenous factors that drive the population dynamics of malaria mosquitoes will facilitate more accurate predictions about vector control effectiveness and our ability to destabilize the growth of either low- or high-density insect populations. We assessed whether variation in phenotypic traits predict the dynamics of Anopheles gambiae sensu lato mosquitoes, the most important vectors of human malaria. Anopheles gambiae dynamics were monitored over a six-month period of seasonal growth and decline. The population exhibited density-dependent feedback, with the carrying capacity being modified by rainfall (97% w AIC c support). The individual phenotypic expression of the maternal ( p = 0.0001) and current ( p = 0.040) body size positively influenced population growth. Our field-based evidence uniquely demonstrates that individual fitness can have population-level impacts and, furthermore, can mitigate the impact of exogenous drivers (e.g. rainfall) in species whose reproduction depends upon it. Once frontline interventions have suppressed mosquito densities, attempts to eliminate malaria with supplementary vector control tools may be attenuated by increased population growth and individual fitness.


Author(s):  
Mariano E. Malvé ◽  
Sandra Gordillo ◽  
Marcelo M. Rivadeneira

There is growing concern about the impact of contemporaneous ocean acidification on marine ecosystems, but strong evidence for predicting the consequences is still scant. We have used the gastropod Trophon geversianus as a study model for exploring the importance of oceanographic variables (sea surface temperature, chlorophyll a, oxygen, calcite and pH) on large-scale latitudinal variation in mean shell length and relative shell weight. Data were collected from a survey carried out in 34 sites along ~1600 km. Neither shell length nor relative shell weight showed any monotonic latitudinal trend, and the patterns of spatial variability were rather complex. After correcting for spatial autocorrelation, only pH showed a significant correlation with mean shell length and relative shell weight, but contrary to expectations, the association was negative in both cases. We hypothesize that this could mirror the negative effect of acidification on growth rate, which may cause larger asymptotic size. Latitudinal trends of body size variation are not easy to generalize using ecogeographic rules, and may be the result of a complex interaction of environmental drivers and life-history responses.


2019 ◽  
Author(s):  
Shotaro Shiratsuru ◽  
Andrea Friebe ◽  
Jon E. Swenson ◽  
Andreas Zedrosser

AbstractHibernation is an adaptive strategy to survive harsh winter conditions and food shortage. The use of well-insulated winter dens helps animals minimize energy loss during hibernation. Brown bears (Ursus arctos) commonly use excavated dens for hibernation. Physical properties of excavated dens, such as the amount of space between a bear and the inner wall, wall/roof thickness, and bedding materials, are expected to impact heat retention and energy conservation of bears. The objective of this study was to examine the impact of physical properties of excavated dens on energy conservation in hibernating bears. Our hypothesis was that bears excavate dens in a way to minimize heat loss and optimize energy conservation during hibernation. We predicted that physical properties of excavated dens would significantly affect the bears’ post-hibernation body condition. To test our hypothesis and prediction, we analyzed data collected from brown bears in Sweden with linear mixed effects models, examining (i) what factors affect den-excavation behavior and (ii) if physical properties of excavated dens affect post-hibernation body condition. We found that bears excavated a den cavity in relation to their body size, that older bears tended to excavate better-fitting den cavities compared to young bears, and that the physical properties of excavated dens did not significantly affect a bears’ post-hibernation body condition. Older bears excavated better-fitting den cavities, suggesting a potentially experience-based shift with age in den-excavation behavior and an optimum cavity size relative to a bear’s body size. The strong year effect shown by the most parsimonious model for post-hibernation body condition suggests that variations in physical properties of excavated dens are possibly negligible, compared to the large annual variations in biotic and abiotic factors affecting pre-hibernation body condition and heat loss during hibernation.


Sign in / Sign up

Export Citation Format

Share Document