Global identification of full‐length cassava lncRNAs unveils the role of COLD‐RESPONSIVE INTERGENIC lncRNA 1 in cold stress response

2021 ◽  
Author(s):  
Shuxia Li ◽  
Zhihao Cheng ◽  
Shiman Dong ◽  
Zhibo Li ◽  
Liangping Zou ◽  
...  
Author(s):  
shuxia li ◽  
Zhihao Cheng ◽  
Shiman Dong ◽  
Zhibo Li ◽  
Liangping Zou ◽  
...  

Long non-coding RNAs (lncRNAs) have been considered to be important regulators of gene expression in a range of biological processes in plants. A large number of lncRNAs have been identified in plants. However, most of their biological functions still remain to be determined. Here, we identified total 3 004 lncRNAs in cassava under normal or cold-treated conditions from Iso-seq data. We further characterized a lincRNA, CRIR1, as a novel positive regulator of the plant response to cold stress. CRIR1 can be significantly induced by cold treatment. Overexpression of CRIR1 in cassava enhanced the cold tolerance of transgenic plants. Transcriptome analysis demonstrated that CRIR1 regulates a range of cold stress-related genes in a CBF-independent pathway. We further found that CRIR1 RNA can interact with MeCSP5, a homolog of the cold shock protein that acts as RNA chaperones, indicating that CRIR1 may recruit MeCSP5 to improve the translation efficiency of mRNA. In summary, our study greatly extends the repertoire of lncRNAs in plants as well as its responding to cold stress. Moreover, it reveals a sophisticated mechanism by which CRIR1 regulates plant cold stress response by modulating the expression of stress-responsive genes and increasing the translational yield.


2021 ◽  
Author(s):  
Zemin Wang ◽  
Darren Chern Jan Wong ◽  
Yi Wang ◽  
Guangzhao Xu ◽  
Chong Ren ◽  
...  

Abstract Cultivated grapevine (Vitis) is a highly valued horticultural crop, and cold stress affects its growth and productivity. Wild Amur grape (Vitis amurensis) PAT1 (Phytochrome A signal transduction 1, VaPAT1) is induced by low temperature, and ectopic expression of VaPAT1 enhances cold tolerance in Arabidopsis (Arabidopsis thaliana). However, little is known about the molecular mechanism of VaPAT1 during the cold stress response in grapevine. Here, we confirmed the overexpression of VaPAT1 in transformed grape calli enhanced cold tolerance. Yeast two-hybrid and bimolecular fluorescence complementation assays highlighted an interaction between VaPAT1 with INDETERMINATE-DOMAIN 3 (VaIDD3). A role of VaIDD3 in cold tolerance was also indicated. Transcriptome analysis revealed VaPAT1 and VaIDD3 overexpression and cold treatment coordinately modulate the expression of stress-related genes including lipoxygenase 3 (LOX3), a gene encoding a key jasmonate biosynthesis enzyme. Co-expression network analysis indicated LOX3 might be a downstream target of VaPAT1. Both electrophoretic mobility shift and dual luciferase reporter assays showed the VaPAT1-IDD3 complex binds to the IDD-box (AGACAAA) in the VaLOX3 promoter to activate its expression. Overexpression of both VaPAT1 and VaIDD3 increased the transcription of VaLOX3 and JA levels in transgenic grape calli. Conversely, VaPAT1-SRDX (dominant repression) and CRISPR/Cas9-mediated mutagenesis of PAT1-ED causing the loss of the C-terminus in grape calli dramatically prohibited the accumulation of VaLOX3 and JA levels during cold treatment. Together, these findings point to a pivotal role of VaPAT1 in the cold stress response in grape by regulating JA biosynthesis.


2011 ◽  
Vol 146 (2) ◽  
pp. 163-169 ◽  
Author(s):  
Sinisa Vidovic ◽  
Anil K. Mangalappalli-Illathu ◽  
Darren R. Korber

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Rita Kusi-Appiah Hayford ◽  
Ayalew Ligaba-Osena ◽  
Mayavan Subramani ◽  
Adrianne Brown ◽  
Kalpalatha Melmaiee ◽  
...  

Histone deacetylases (HDACs) are important regulators of gene transcription thus controlling multiple cellular processes. Despite its essential role in plants,HDA6is yet to be validated in common bean. In this study, we show thatHDA6is involved in plant development and stress response. Differential expression ofHDA6was determined in various tissues and the expression was seen to be upregulated with plant age (seedling < flowering < maturity). Higher expression was observed in flowers and pods than in stem, leaf, and root. Upregulation ofHDA6gene during cold stress implies its prominent role in abiotic stress. Furthermore, theHDA6gene was isolated from three common bean genotypes and sequence analyses revealed homology with functionally characterized homologs in model species. The 53 kDa translated product was detected using anHDA6specific antibody and recombinant protein overexpressed inEscherichia colishowed HDAC activityin vitro. To our knowledge, this is the first report in the agriculturally important crop common bean describing the functional characterization and biological role ofHDA6.


2009 ◽  
Vol 99 (6) ◽  
pp. 679-688 ◽  
Author(s):  
Mary J. Hagen ◽  
Virginia O. Stockwell ◽  
Cheryl A. Whistler ◽  
Kenneth B. Johnson ◽  
Joyce E. Loper

Establishment of suppressive populations of bacterial biological control agents on aerial plant surfaces is a critical phase in biologically based management of floral diseases. Periodically, biocontrol agents encounter inhospitable conditions for growth on plants; consequently, tolerance of environmental stresses may contribute to their fitness. In many gram-negative bacteria, including strains of Pseudomonas spp., the capacity to survive environmental stresses is influenced by the stationary phase sigma factor RpoS. This study focused on the role of RpoS in stress response and epiphytic fitness of Pseudomonas fluorescens A506, a well-studied bacterial biological control agent. We detected a frameshift mutation in the rpoS of A506 and demonstrated that the mutation resulted in a truncated, nonfunctional RpoS. Using site-directed mutagenesis, we deleted a nucleotide from rpoS, which then encoded a full-length, functional RpoS. We compared the stress response and epiphytic fitness of A506 with derivative strains having the functional full-length RpoS or a disrupted, nonfunctional RpoS. RpoS had little effect on stress response of A506 and no consistent influence on epiphytic population size of A506 on pear or apple leaves or flowers. Although the capacity of strain A506 to withstand exposure to environmental stresses was similar to that of other fluorescent pseudomonads, this capacity was largely independent of rpoS.


Author(s):  
Mohammad Aslam ◽  
Kenji Sugita ◽  
Yuan Qin ◽  
Abidur Rahman

Abstract The phytohormone auxin and microRNA-mediated regulation of gene expressions are key regulators for plant growth and development at both optimal and under low-temperature stress conditions. However, the mechanistic link between microRNA and auxin in regulating plant cold stress response remains elusive. To better understand the role of microRNA in the crosstalk between auxin and cold stress responses, we took advantage of the mutants of Arabidopsis thaliana with altered response to auxin transport and signal. Screening of the mutants for root growth recovery after cold stress at 4°C revealed that the auxin signaling mutant, solitary root 1 ( slr1; mutation in Aux/IAA14), shows a hypersensitive response to cold stress. Genome-wide expression analysis of miRNA in wild-type and slr1 mutant roots using next-generation deep sequencing revealed 180 known and 86 novel cold-responsive microRNAs. Cold stress also increased the abundance of 26nt-31nt small RNA population in slr1 compared with wild-type. Comparative analysis of microRNA expression shows differential expression of 13 miRNAs in slr1 compared with wild-type. Target gene expression analysis of one of the potential candidate miRNAs, miR169 revelaed the possible involvement of miR169- NF-YA module in the auxin-mediated cold stress response. Taken together, these results indicate that SLR/IAA14, a transcriptional repressor of auxin signaling, plays a crucial role in integrating miRNA in auxin and cold responses.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Sensen Zhang ◽  
Baolei Yuan ◽  
Jordy Homing Lam ◽  
Jun Zhou ◽  
Xuan Zhou ◽  
...  

AbstractPannexin1 (PANX1) is a large-pore ATP efflux channel with a broad distribution, which allows the exchange of molecules and ions smaller than 1 kDa between the cytoplasm and extracellular space. In this study, we show that in human macrophages PANX1 expression is upregulated by diverse stimuli that promote pyroptosis, which is reminiscent of the previously reported lipopolysaccharide-induced upregulation of PANX1 during inflammasome activation. To further elucidate the function of PANX1, we propose the full-length human Pannexin1 (hPANX1) model through cryo-electron microscopy (cryo-EM) and molecular dynamics (MD) simulation studies, establishing hPANX1 as a homo-heptamer and revealing that both the N-termini and C-termini protrude deeply into the channel pore funnel. MD simulations also elucidate key energetic features governing the channel that lay a foundation to understand the channel gating mechanism. Structural analyses, functional characterizations, and computational studies support the current hPANX1-MD model, suggesting the potential role of hPANX1 in pyroptosis during immune responses.


Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 99
Author(s):  
Shweta Devi ◽  
Vijay Kumar ◽  
Sandeep Kumar Singh ◽  
Ashish Kant Dubey ◽  
Jong-Joo Kim

Neurodegenerative disorders, such as Parkinson’s disease (PD), Alzheimer’s disease (AD), Amyotrophic lateral sclerosis (ALS), and Huntington’s disease (HD), are the most concerning disorders due to the lack of effective therapy and dramatic rise in affected cases. Although these disorders have diverse clinical manifestations, they all share a common cellular stress response. These cellular stress responses including neuroinflammation, oxidative stress, proteotoxicity, and endoplasmic reticulum (ER)-stress, which combats with stress conditions. Environmental stress/toxicity weakened the cellular stress response which results in cell damage. Small molecules, such as flavonoids, could reduce cellular stress and have gained much attention in recent years. Evidence has shown the potential use of flavonoids in several ways, such as antioxidants, anti-inflammatory, and anti-apoptotic, yet their mechanism is still elusive. This review provides an insight into the potential role of flavonoids against cellular stress response that prevent the pathogenesis of neurodegenerative disorders.


Sign in / Sign up

Export Citation Format

Share Document