scholarly journals Characterization and Expression Analysis of Common BeanHistone Deacetylase 6during Development and Cold Stress Response

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Rita Kusi-Appiah Hayford ◽  
Ayalew Ligaba-Osena ◽  
Mayavan Subramani ◽  
Adrianne Brown ◽  
Kalpalatha Melmaiee ◽  
...  

Histone deacetylases (HDACs) are important regulators of gene transcription thus controlling multiple cellular processes. Despite its essential role in plants,HDA6is yet to be validated in common bean. In this study, we show thatHDA6is involved in plant development and stress response. Differential expression ofHDA6was determined in various tissues and the expression was seen to be upregulated with plant age (seedling < flowering < maturity). Higher expression was observed in flowers and pods than in stem, leaf, and root. Upregulation ofHDA6gene during cold stress implies its prominent role in abiotic stress. Furthermore, theHDA6gene was isolated from three common bean genotypes and sequence analyses revealed homology with functionally characterized homologs in model species. The 53 kDa translated product was detected using anHDA6specific antibody and recombinant protein overexpressed inEscherichia colishowed HDAC activityin vitro. To our knowledge, this is the first report in the agriculturally important crop common bean describing the functional characterization and biological role ofHDA6.

2021 ◽  
Vol 11 (15) ◽  
pp. 6865
Author(s):  
Eun Seon Lee ◽  
Joung Hun Park ◽  
Seong Dong Wi ◽  
Ho Byoung Chae ◽  
Seol Ki Paeng ◽  
...  

The thioredoxin-h (Trx-h) family of Arabidopsis thaliana comprises cytosolic disulfide reductases. However, the physiological function of Trx-h2, which contains an additional 19 amino acids at its N-terminus, remains unclear. In this study, we investigated the molecular function of Trx-h2 both in vitro and in vivo and found that Arabidopsis Trx-h2 overexpression (Trx-h2OE) lines showed significantly longer roots than wild-type plants under cold stress. Therefore, we further investigated the role of Trx-h2 under cold stress. Our results revealed that Trx-h2 functions as an RNA chaperone by melting misfolded and non-functional RNAs, and by facilitating their correct folding into active forms with native conformation. We showed that Trx-h2 binds to and efficiently melts nucleic acids (ssDNA, dsDNA, and RNA), and facilitates the export of mRNAs from the nucleus to the cytoplasm under cold stress. Moreover, overexpression of Trx-h2 increased the survival rate of the cold-sensitive E. coli BX04 cells under low temperature. Thus, our data show that Trx-h2 performs function as an RNA chaperone under cold stress, thus increasing plant cold tolerance.


2021 ◽  
Author(s):  
Zemin Wang ◽  
Darren Chern Jan Wong ◽  
Yi Wang ◽  
Guangzhao Xu ◽  
Chong Ren ◽  
...  

Abstract Cultivated grapevine (Vitis) is a highly valued horticultural crop, and cold stress affects its growth and productivity. Wild Amur grape (Vitis amurensis) PAT1 (Phytochrome A signal transduction 1, VaPAT1) is induced by low temperature, and ectopic expression of VaPAT1 enhances cold tolerance in Arabidopsis (Arabidopsis thaliana). However, little is known about the molecular mechanism of VaPAT1 during the cold stress response in grapevine. Here, we confirmed the overexpression of VaPAT1 in transformed grape calli enhanced cold tolerance. Yeast two-hybrid and bimolecular fluorescence complementation assays highlighted an interaction between VaPAT1 with INDETERMINATE-DOMAIN 3 (VaIDD3). A role of VaIDD3 in cold tolerance was also indicated. Transcriptome analysis revealed VaPAT1 and VaIDD3 overexpression and cold treatment coordinately modulate the expression of stress-related genes including lipoxygenase 3 (LOX3), a gene encoding a key jasmonate biosynthesis enzyme. Co-expression network analysis indicated LOX3 might be a downstream target of VaPAT1. Both electrophoretic mobility shift and dual luciferase reporter assays showed the VaPAT1-IDD3 complex binds to the IDD-box (AGACAAA) in the VaLOX3 promoter to activate its expression. Overexpression of both VaPAT1 and VaIDD3 increased the transcription of VaLOX3 and JA levels in transgenic grape calli. Conversely, VaPAT1-SRDX (dominant repression) and CRISPR/Cas9-mediated mutagenesis of PAT1-ED causing the loss of the C-terminus in grape calli dramatically prohibited the accumulation of VaLOX3 and JA levels during cold treatment. Together, these findings point to a pivotal role of VaPAT1 in the cold stress response in grape by regulating JA biosynthesis.


2010 ◽  
Vol 2010 ◽  
pp. 1-11 ◽  
Author(s):  
Galileo Escobedo ◽  
Gloria Soldevila ◽  
Guadalupe Ortega-Pierres ◽  
Jesús Ramsés Chávez-Ríos ◽  
Karen Nava ◽  
...  

MAP kinases (MAPK) are involved in the regulation of cellular processes such as reproduction and growth. In parasites, the role of MAPK has been scarcely studied. Here, we describe the participation of an ERK-like protein in estrogen-dependent reproduction of the helminth parasiteTaenia crassiceps. Our results show that 17β-estradiol induces a concentration-dependent increase in the bud number of in vitro cultured cysticerci. If parasites are also incubated in presence of an ERK-inhibitor, the stimulatory effect of estrogen is blocked. The expression of ERK-like mRNA and its corresponding protein was detected in the parasite. The ERK-like protein was over-expressed by all treatments. Nevertheless, a strong induction of phosphorylation of this protein was observed only in response to 17β-estradiol. Cross-contamination by host cells was discarded by flow cytometry analysis. Parasite cells expressing the ERK-like protein were exclusively located at the subtegument tissue by confocal microscopy. Finally, the ERK-like protein was separated by bidimensional electrophoresis and then sequenced, showing the conserved TEY activation motif, typical of all known ERK 1/2 proteins. Our results show that an ERK-like protein is involved in the molecular signalling during the interaction between the host andT. crassiceps, and may be considered as target for anti-helminth drugs design.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Xinyuan He ◽  
Yan Chen ◽  
Daisy Guiza Beltran ◽  
Maia Kelly ◽  
Bin Ma ◽  
...  

Abstract Protein tyrosine O-sulfation (PTS) plays a crucial role in extracellular biomolecular interactions that dictate various cellular processes. It also involves in the development of many human diseases. Regardless of recent progress, our current understanding of PTS is still in its infancy. To promote and facilitate relevant studies, a generally applicable method is needed to enable efficient expression of sulfoproteins with defined sulfation sites in live mammalian cells. Here we report the engineering, in vitro biochemical characterization, structural study, and in vivo functional verification of a tyrosyl-tRNA synthetase mutant for the genetic encoding of sulfotyrosine in mammalian cells. We further apply this chemical biology tool to cell-based studies on the role of a sulfation site in the activation of chemokine receptor CXCR4 by its ligand. Our work will not only facilitate cellular studies of PTS, but also paves the way for economical production of sulfated proteins as therapeutic agents in mammalian systems.


2019 ◽  
Vol 294 (25) ◽  
pp. 9901-9910 ◽  
Author(s):  
Ling Lin ◽  
Chaowen Shi ◽  
Zhaorui Sun ◽  
Nhat-Tu Le ◽  
Jun-Ichi Abe ◽  
...  

Healthy kidney structure and environment rely on epithelial integrity and interactions between epithelial cells and other kidney cells. The Ser/Thr kinase 90 kDa ribosomal protein S6 kinase 1 (p90RSK) belongs to a protein family that regulates many cellular processes, including cell motility and survival. p90RSK is predominantly expressed in the kidney, but its possible role in chronic kidney disease (CKD) remains largely unknown. Here, we found that p90RSK expression is dramatically activated in a classic mouse obstructive chronic kidney disease model, largely in the interstitial FSP-1–positive fibroblasts. We generated FSP-1–specific p90RSK transgenic mouse (RSK-Tg) and discovered that these mice, after obstructive injury, display significantly increased fibrosis and enhanced tubular epithelial damage compared with their wt littermates (RSK-wt), indicating a role of p90RSK in fibroblast–epithelial communication. We established an in vitro fibroblast–epithelial coculture system with primary kidney fibroblasts from RSK-Tg and RSK-wt mice and found that RSK-Tg fibroblasts consistently produce excessive H2O2 causing epithelial oxidative stress and inducing nuclear translocation of the signaling protein β-catenin. Epithelial accumulation of β-catenin, in turn, promoted epithelial apoptosis by activating the transcription factor forkhead box class O1 (FOXO1). Of note, blockade of reactive oxygen species (ROS) or β-catenin or FOXO1 activity abolished fibroblast p90RSK-mediated epithelial apoptosis. These results make it clear that p90RSK promotes kidney fibrosis by inducing fibroblast-mediated epithelial apoptosis through ROS-mediated activation of β-catenin/FOXO1 signaling pathway.


2017 ◽  
Vol 63 (4) ◽  
Author(s):  
Magdalena Małgowska

G-quadruplexes are non-canonical secondary structures which may be formed by guanine rich sequences, both in vitro and in living cells. The number of biological functions assigned to these structural motifs has grown rapidly since the discovery of their involvement in the telomere maintenance. Knowledge of the three-dimensional structures of G-quadruplexes plays an important role in understanding their conformational diversity, physiological functions, and in the design of novel drugs targeting G-quadruplexes. For the last decades, structural studies have been mainly focused on the DNA G-quadruplexes. Their RNA counterparts gained an increased interest along with still-emerging recognition of the central role of RNA in multiple cellular processes. In this review we focus on structural properties of RNA G-quadruplexes, based on high-resolution structures, available in RCSB PDB data base and on structural models. In addition, we point out to the current challenges in this field of research.


2006 ◽  
Vol 203 (4) ◽  
pp. 821-828 ◽  
Author(s):  
Hiromichi Matsushita ◽  
Pier Paolo Scaglioni ◽  
Mantu Bhaumik ◽  
Eduardo M. Rego ◽  
Lu Fan Cai ◽  
...  

The promyelocytic leukemia–retinoic acid receptor α (PML-RARα) protein of acute promyelocytic leukemia (APL) is oncogenic in vivo. It has been hypothesized that the ability of PML-RARα to inhibit RARα function through PML-dependent aberrant recruitment of histone deacetylases (HDACs) and chromatin remodeling is the key initiating event for leukemogenesis. To elucidate the role of HDAC in this process, we have generated HDAC1–RARα fusion proteins and tested their activity and oncogenicity in vitro and in vivo in transgenic mice (TM). In parallel, we studied the in vivo leukemogenic potential of dominant negative (DN) and truncated RARα mutants, as well as that of PML-RARα mutants that are insensitive to retinoic acid. Surprisingly, although HDAC1-RARα did act as a bona fide DN RARα mutant in cellular in vitro and in cell culture, this fusion protein, as well as other DN RARα mutants, did not cause a block in myeloid differentiation in vivo in TM and were not leukemogenic. Comparative analysis of these TM and of TM/PML−/− and p53−/− compound mutants lends support to a model by which the RARα and PML blockade is necessary, but not sufficient, for leukemogenesis and the PML domain of the fusion protein provides unique functions that are required for leukemia initiation.


2014 ◽  
Vol 306 (5) ◽  
pp. E483-E493 ◽  
Author(s):  
Manuel D. Gahete ◽  
Mario Durán-Prado ◽  
Elena Delgado-Niebla ◽  
Juan J. Garrido ◽  
Simon J. Rhodes ◽  
...  

The majority of the biological actions attributed to somatostatin (SST) are thought to be mediated by SST receptor 2 (sst2), the most ubiquitous sst, and, to a lesser extent, by sst5. However, a growing body of evidence suggests a relevant role of sst1 in mediating SST actions in (patho)physiological situations (i.e., endometriosis, type 2 diabetes). Moreover, sst1 together with sst2 and sst5 is involved in the well-known actions of SST on pituitary somatotropes in pig and primates. Here, we cloned the porcine sst1 (psst1) and performed a structural and functional characterization using both primary and heterologous models. The psst1 sequence presents the majority of signature motifs shared among G protein-coupled receptors and, specifically, among ssts and exhibits a high homology with other mammalian sst1, with only minor differences in the amino-terminal domain, reinforcing the idea of an early evolutive divergence between mammalian and nonmammalian sst1s. psst1 is functional in terms of decreasing cAMP levels in response to SST when transfected in heterologous models. The psst1 receptor is expressed in several tissues, and analyses of gene cis elements predict regulation by multiple transcription factors and metabolic stimuli. Finally, psst1 is coexpressed with other sst subtypes in various tissues, and in vitro data demonstrate that psst1 can interact with itself forming homodimers and with other ssts forming heterodimers. These data highlight the functional importance of sst1 on the SST-mediated effects and its functional interaction with different ssts, which point out the necessity of exploring the consequences of such interactions.


2011 ◽  
Vol 16 (3) ◽  
pp. 332-337 ◽  
Author(s):  
Marc W. Halterman

Inducible gene expression systems are particularly useful for the functional characterization of genes with putative toxic properties. In the course of studying the role of hypoxia-regulated gene expression on cell survival using the tetracycline-inducible (tet-on) system, the author noted that exposure to the inducing ligand doxycycline (dox) inhibited caspase-3 cleavage in control samples. To limit this confounding off-target effect, he devised an in vitro pulse dose, delayed-injury protocol testing both dox and a novel tetracycline analog 9-t-butyl doxycycline (9-TB). Although 9-TB induced higher transgene levels compared to matched concentrations of dox, continuous exposure to both drugs inhibited caspase-3 cleavage in hypoxic samples. Conversely, a 6-h pulse dose of 9-TB followed by a 40-h washout period prior to hypoxic challenge activated robust transgene expression and lessened the inhibitory effects on caspase-3 processing. It is anticipated that these protocol modifications will improve the performance of tet-regulated genetic screens, particularly in situations where cell death is used as a primary end point.


2018 ◽  
Author(s):  
Lijun Guo ◽  
Marc Bramkamp

ABSTRACTThe dynamins family of GTPases is involved in key cellular processes in eukaryotes, including vesicle trafficking and organelle division. The GTP hydrolysis cycle of dynamin translates to a conformational change in the protein structure, which forces the underlying lipid layer into an energetically unstable conformation that promotes membrane rearrangements. Many bacterial genomes encode dynamin-like proteins, but the biological function of these proteins has remained largely enigmatic. In recent years, our group has reported that the dynamin-like protein DynA from Bacillus subtilis mediates nucleotide-independent membrane tethering in vitro and contributes to the innate immunity of bacteria against membrane stress and phage infection. However, so far the mechanism of membrane stress response and the role of GTP hydrolysis remain unclear. Here, we employed content mixing and lipid mixing assays in reconstituted systems to study if the dynamin-like protein DynA from B. subtilis induces membrane full fusion, and further test the possibility that GTP hydrolysis of DynA may act on the fusion-through-hemifusion pathway. Our results based on fluorescence resonance energy transfer (FRET) indicated that DynA could induce aqueous content mixing even in absence of GTP. Moreover, DynA-induced membrane fusion in vitro is a thermo-promoted slow response. Surprisingly, digestion of protein mediated an instantl rise of content exchange, supporting the assumption that disassembly of DynA is the fundamental power for fusion-through-hemifusion.


Sign in / Sign up

Export Citation Format

Share Document