CHARACTERISATIONS OF CHROMIUM CARBIDE-BASED COATED COMBUSTOR LINER FOR GAS TURBINES

2015 ◽  
Vol 76 (10) ◽  
Author(s):  
Salmi Mohd Yunus ◽  
Mariyam Jameelah Ghazali ◽  
Wan Fathul Hakim W. Zamrib ◽  
Ahmad Afiq Pauzi ◽  
Shuib Husin

A gas turbine combustor liner experienced visible surface damages during its normal operation of 8000 hours. Small amplitudes of vibration during the operation contributed to a surface degradation, mainly wear. A chromium-carbide based hard coating was deposited via plasma spray technique on the outer surface of a combustor liner of a gas turbine engine. It was found that after the operation, the coating hardness had increased more than 30% compared to its minimum initial hardness and reached up to 744 HV particularly in the crossfire tube collar mating areas. Comparison between the coated and the uncoated liners were carried out in order to show how much the wear scars have been minimized throughout the operation under severe temperature of approximately 1, 500°C. It was found that in this study the coating of chromium-carbide is capable to reduce the wear damage due to the work hardening effect of the liner and their mating surfaces.  

Author(s):  
P. A. Phillips ◽  
Peter Spear

After briefly summarizing worldwide automotive gas turbine activity, the paper analyses the power plant requirements of a wide range of vehicle applications in order to formulate the design criteria for acceptable vehicle gas turbines. Ample data are available on the thermodynamic merits of various gas turbine cycles; however, the low cost of its piston engine competitor tends to eliminate all but the simplest cycles from vehicle gas turbine considerations. In order to improve the part load fuel economy, some complexity is inevitable, but this is limited to the addition of a glass ceramic regenerator in the 150 b.h.p. engine which is described in some detail. The alternative further complications necessary to achieve satisfactory vehicle response at various power/weight ratios are examined. Further improvement in engine performance will come by increasing the maximum cycle temperature. This can be achieved at lower cost by the extension of the use of ceramics. The paper is intended to stimulate the design application of the gas turbine engine.


1996 ◽  
Vol 118 (3) ◽  
pp. 201-208 ◽  
Author(s):  
S. M. Correa ◽  
I. Z. Hu ◽  
A. K. Tolpadi

Computer modeling of low-emissions gas-turbine combustors requires inclusion of finite-rate chemistry and its intractions with turbulence. The purpose of this review is to outline some recent developments in and applications of the physical models of combusting flows. The models reviewed included the sophisticated and computationally intensive velocity-composition pdf transport method, with applications shown for both a laboratory flame and for a practical gas-turbine combustor, as well as a new and computationally fast PSR-microstructure-based method, with applications shown for both premixed and nonpremixed flames. Calculations are compared with laserbased spectroscopic data where available. The review concentrates on natural-gas-fueled machines, and liquid-fueled machines operating at high power, such that spray vaporization effects can be neglected. Radiation and heat transfer is also outside the scope of this review.


Author(s):  
G. J. Sturgess

The paper deals with a small but important part of the overall gas turbine engine combustion system and continues earlier published work on turbulence effects in film cooling to cover the case of film turbulence. Film cooling of the gas turbine combustor liner imposes certain geometric limitations on the coolant injection device. The impact of practical film injection geometry on the cooling is one of increased rates of film decay when compared to the performance from idealized injection geometries at similar injection conditions. It is important to combustor durability and life estimation to be able to predict accurately the performance obtainable from a given practical slot. The coolant film is modeled as three distinct regions, and the effects of injection slot geometry on the development of each region are described in terms of film turbulence intensity and initial circumferential non-uniformity of the injected coolant. The concept of the well-designed slot is introduced and film effectiveness is shown to be dependent on it. Only slots which can be described as well-designed are of interest in practical equipment design. A prediction procedure is provided for well-designed slots which describes growth of the film downstream of the first of the three film regions. Comparisons of predictions with measured data are made for several very different well-designed slots over a relatively wide range of injection conditions, and good agreement is shown.


Author(s):  
Robert A. Wilson ◽  
Daniel B. Kupratis ◽  
Satyanarayana Kodali

The Department of Defense and NASA have funded a major gas turbine development program, Integrated High Performance Turbine Engine Technology (IHPTET), to double the power density and fuel economy of gas turbines by the turn of the century. Seven major US gas turbine developers participated in this program. While the focus of IHPTET activity has been aircraft propulsion, the same underlying technology can be applied to water craft and terrestrial vehicle propulsion applications, such as the future main battle tank. For these applications, the gas turbines must be equipped with recuperators. Currently, there is no technology roadmap or set of goals to guide industry and government in the development of a next generation recuperator for such applications.


2016 ◽  
Vol 138 (06) ◽  
pp. 38-43
Author(s):  
Lee S. Langston

This article discusses various fields where gas turbines can play a vital role. Building engines for commercial jetliners is the largest market segment for the gas turbine industry; however, it is far from being the only one. One 2015 military gas turbine program of note was the announcement of an U.S. Air Force competition for an innovative design of a small turbine engine, suitable for a medium-size drone aircraft. The electrical power gas turbine market experienced a sharp boom and bust from 2000 to 2002 because of the deregulation of many electric utilities. Since then, however, the electric power gas turbine market has shown a steady increase, right up to present times. Coal-fired plants now supply less than 5 percent of the electrical load, having been largely replaced by new natural gas-fired gas turbine power plants. Working in tandem with renewable energy power facilities, the new fleet of gas turbines is expected to provide reliable, on-demand electrical power at a reasonable cost.


Author(s):  
Douglas A. Pennell ◽  
Mirko R. Bothien ◽  
Andrea Ciani ◽  
Victor Granet ◽  
Ghislain Singla ◽  
...  

This paper introduces and presents validation of the Constant Pressure Sequential Combustion system (denoted CPSC), a second generation concept developed for and applied to the new Ansaldo GT36 H-class gas turbine combustors. It has evolved from the well-established sequential burner technology applied to all current GT26 and GT24 gas turbines, and contains all architectural improvements implemented since original inception of this engine frame in 1994, with beneficial effects on the operation turndown, fuel flexibility, on the overall system robustness, and featuring the required aspects to stay competitive in the present day energy market. The applied air and fuel management therefore facilitate emission and dynamics control at both the extremely high and low firing temperature ranges required for existing and future Ansaldo gas turbine engine classes.


Author(s):  
Oanh Nguyen ◽  
Scott Samuelsen

In view of increasingly stringent NOx emissions regulations on stationary gas turbines, lean combustion offers an attractive option to reduce reaction temperatures and thereby decrease NOx production. Under lean operation, however, the reaction is vulnerable to blowout. It is herein postulated that pilot hydrogen dopant injection, discretely located, can enhance the lean blowout performance without sacrificing overall performance. The present study addresses this hypothesis in a research combustor assembly, operated at atmospheric pressure, and fired on natural gas using rapid mixing injection, typical of commercial units. Five hydrogen injector scenarios are investigated. The results show that (1) pilot hydrogen dopant injection, discretely located, leads to improved lean blowout performance and (2) the location of discrete injection has a significant impact on the effectiveness of the doping strategy.


Author(s):  
Firat Kiyici ◽  
Ahmet Topal ◽  
Ender Hepkaya ◽  
Sinan Inanli

A numerical study, based on experimental work of Inanli et al. [1] is conducted to understand the heat transfer characteristics of film cooled test plates that represent the gas turbine combustor liner cooling system. Film cooling tests are conducted by six different slot geometries and they are scaled-up model of real combustor liner. Three different blowing ratios are applied to six different geometries and surface cooling effectiveness is determined for each test condition by measuring the surface temperature distribution. Effects of geometrical and flow parameters on cooling effectiveness are investigated. In this study, Conjugate Heat Transfer (CHT) simulations are performed with different turbulence models. Effect of the turbulent Prandtl Number is also investigated in terms of heat transfer distribution along the measurement surface. For this purpose, turbulent Prandtl number is calculated with a correlation as a function of local surface temperature gradient and its effect also compared with the constant turbulent Prandtl numbers. Good agreement is obtained with two-layered k–ϵ with modified Turbulent Prandtl number.


Author(s):  
J. D. MacLeod ◽  
W. Grabe

The Machinery and Engine Technology (MET) Program of the National Research Council of Canada (NRCC) has established a program for the evaluation of sensors to measure gas turbine engine performance accurately. The precise measurement of fuel flow is an essential part of steady-state gas turbine performance assessment. Prompted by an international engine testing and information exchange program, and a mandate to improve all aspects of gas turbine performance evaluation, the MET Laboratory has critically examined two types of fuel flowmeters, Coriolis and turbine. The two flowmeter types are different in that the Coriolis flowmeter measures mass flow directly, while the turbine flowmeter measures volumetric flow, which must be converted to mass flow for conventional performance analysis. The direct measurement of mass flow, using a Coriolis flowmeter, has many advantages in field testing of gas turbines, because it reduces the risk of errors resulting from the conversion process. Turbine flowmeters, on the other hand, have been regarded as an industry standard because they are compact, rugged, reliable, and relatively inexpensive. This paper describes the project objectives, the experimental installation, and the results of the comparison of the Coriolis and turbine type flowmeters in steady-state performance testing. Discussed are variations between the two types of flowmeters due to fuel characteristics, fuel handling equipment, acoustic and vibration interference and installation effects. Also included in this paper are estimations of measurement uncertainties for both types of flowmeters. Results indicate that the agreement between Coriolis and turbine type flowmeters is good over the entire steady-state operating range of a typical gas turbine engine. In some cases the repeatability of the Coriolis flowmeter is better than the manufacturers specification. Even a significant variation in fuel density (10%), and viscosity (300%), did not appear to compromise the ability of the Coriolis flowmeter to match the performance of the turbine flowmeter.


2005 ◽  
Vol 73 (3) ◽  
pp. 374-381 ◽  
Author(s):  
K. Mahesh ◽  
G. Constantinescu ◽  
S. Apte ◽  
G. Iaccarino ◽  
F. Ham ◽  
...  

Large-eddy simulation (LES) has traditionally been restricted to fairly simple geometries. This paper discusses LES of reacting flows in geometries as complex as commercial gas turbine engine combustors. The incompressible algorithm developed by Mahesh et al. (J. Comput. Phys., 2004, 197, 215–240) is extended to the zero Mach number equations with heat release. Chemical reactions are modeled using the flamelet/progress variable approach of Pierce and Moin (J. Fluid Mech., 2004, 504, 73–97). The simulations are validated against experiment for methane-air combustion in a coaxial geometry, and jet-A surrogate/air combustion in a gas-turbine combustor geometry.


Sign in / Sign up

Export Citation Format

Share Document