scholarly journals Emulsion breakage behaviour on chromium (VI) removal using emulsion liquid membrane containing quaternary ammonium compounds

2018 ◽  
Vol 14 (2) ◽  
pp. 298-302
Author(s):  
Norul Fatiha Mohamed Noah ◽  
Norasikin Othman ◽  
Norlela Jusoh

Environmental pollution caused by heavy metals such as chromium, nickel, and lead has become a serious worldwide issue due to their threats to humans, animals and plants as well as to the stability of the overall ecosystem. Its removal from effluents such as electroplating rinse wastewater and tannery effluents is of primordial importance. In this study, the emulsion liquid membrane (ELM) technology was employed as a remediation technique that capable of removing Cr (VI) efficiently from wastewater where extraction and stripping processes are performed in a single operation. The ELM is consists of trioctylmethylammonium chloride (Alamine 336) as an extractant, palm oil as an organic diluent, sodium hydroxide (NaOH) as a stripping solution and sorbitan monooleate (Span-80) as a surfactant to stabilize the emulsion phase. The effect of operational parameters such as the agitation speed, phase contact time, extractant concentration and stripping agent concentration were studied to optimize the conditions for emulsion stability and maximum removal of chromium. The best removal efficiency was obtained at 350 rpm of agitation speed and 3 minutes of phase contact time with 0.04 M Alamine 336 as extractant and 0.1 M NaOH as stripping agent. In this condition, the maximum removal efficiency of 100% was obtained with a minimum breakage rate of 5%.

Author(s):  
Negar Jafari ◽  
Afshin Ebrahimi ◽  
Karim Ebrahimpour ◽  
Ali Abdolahnejad

Introduction: Microcystin-leucine arginine (MC-LR) is a toxin with harmful effects on the liver, kidney, heart, and gastrointestinal tract. So, effective removal of MC-LR from water resources is of great importance. The aim of this study was to remove microcystin-LR (MC-LR) from aqueous solution by Titanium Dioxide (TiO2). Materials and Methods: In the present study, TiO2, as a semiconductor, was used for photodegradation of MC-LR under ultraviolet light (UV). The Response Surface Methodology was applied to investigate the effects of operating variables such as pH (A), contact time (B), and catalyst dose (B) on the removal of MC-LR. The MC-LR concentration was measured by high-performance liquid chromatography (HPLC). Results: The results showed that single variables such as A, B, and C had significant effects on MC-LR removal (pvalue < 0.05). In other words, increase of the contact time and catalyst dose had a positive effect on enhancing the removal efficiency of MC-LR, but the effect of pH was negative. The analysis of variance showed that BC, A2, and C2 variables had a significant effect on the MC-LR removal (pvalue < 0.05). Finally, the maximum removal efficiency of MC-LR was 95.1%, which occurred at pH = 5, contact time = 30 minutes, and catalyst dose = 1 g/l. Conclusion: According to the findings, TiO2, as a photocatalyst, had an appropriate effect on degradation of the MC-LR.


2020 ◽  
Vol 21 (3) ◽  
pp. 39-44
Author(s):  
Manal Adnan Mohammed ◽  
Wasan Omar Noori ◽  
Huda Adil Sabbar

In the present work studies were carried out to extract a cationic dye (Methylene Blue MB) from an aqueous solution using emulsion liquid membrane process (ELM). The organic phase (membrane phase) consists of Span 80 as emulsifier, sulfuric acid solution as stripping agent and hexane as diluent.  In this study, important factors influencing the extraction of methylene blue dye were studied. These factors include H2SO4 concentration in the stripping phase, agitation speed in the dye permeation stage, Initial dye concentration and diluent type.    More than (98%) of Methylene blue dye was extracted at the following conditions: H2SO4 concentration (1.25) M, agitation speed (200) rpm, dye concentration (10) ppm and the diluent type was hexane.


2015 ◽  
Vol 14 (1) ◽  
pp. 90-96 ◽  
Author(s):  
Biplob Kumar Pramanik ◽  
Sagor Kumar Pramanik ◽  
Fatihah Suja

Effects of biological activated carbon (BAC), biological aerated filter (BAF), alum coagulation and Moringa oleifera coagulation were investigated to remove iron and arsenic contaminants from drinking water. At an initial dose of 5 mg/L, the removal efficiency for arsenic and iron was 63% and 58% respectively using alum, and 47% and 41% respectively using Moringa oleifera. The removal of both contaminants increased with the increase in coagulant dose and decrease in pH. Biological processes were more effective in removing these contaminants than coagulation. Compared to BAF, BAC gave greater removal of both arsenic and iron, removing 85% and 74%, respectively. Longer contact time for both processes could reduce the greater concentration of arsenic and iron contaminants. The addition of coagulation (at 5 mg/L dosage) and a biological process (with 15 or 60 min contact time) could significantly increase removal efficiency, and the maximum removal was observed for the combination of alum and BAC treatment (60 min contact time), with 100% and 98.56% for arsenic and iron respectively. The reduction efficiency of arsenic and iron reduced with the increase in the concentration of dissolved organics in the feedwater due to the adsorption competition between organic molecules and heavy metals.


2011 ◽  
Vol 340 ◽  
pp. 487-491
Author(s):  
Xiao Ming Chen ◽  
Jian Feng Ma ◽  
Ding Long Li

Bentonite-supported magnetite particles (MagBt-p) were prepared by co-precipitation. The adsorption capacity of Bentonite-supported magnetic particles on waste water containing OrangeⅡ was tested. Some influence factor such as the dose, the initial concentration of OrangeⅡ, the pH, the contact time and the presence of surfactant were studied. Results showed that cation surfactant (CTAB) greatly enhanced the adsorption of OrangeⅡ. The maximum removal efficiency was 96.6% at 180mg/L (CTAB) and beyond this concentration there was almost no adsorption. Besides, the removal efficiency was affected by pH and contact time, the maximum removal efficiency was found at pH 2.1-3, the adsorption was rapid during the first 120 min and then equilibrium within 180min.


2017 ◽  
Vol 19 (1) ◽  
pp. 122-130 ◽  

<p>Application of nano particle in the treatment of municipal solid waste leachate is of recent interest. In this paper, the effectiveness of silica nano particles synthesized from blast furnace slag and iron nano particle synthesized from chemicals was studied for the removal of organic pollutants and color. The synthesized nano particles were characterized using SEM, TEM, EDX and FTIR analysis. Batch experiments were conducted to remove the BOD, COD and color from Aged landfill leachate (ALL) and leachate from the composting yard (CYL).Influencing parameters like pH, contact time, nano particle dosage and Hydrogen peroxide concentration were studied. The maximum removal was achieved at the pH of 6 for both the nano particle, contact time 90 minutes for silica nano particle and 120 minutes for iron nano particle, silica nano particle dose as 0.4g/50 ml, iron nano particle dose as 0.3g/50ml and hydrogen peroxide concentration was found to be 3M and 4M for silica and iron nano particles respectively. The removal efficiency in CYL and ALL using silica nano particle was obtained as 87.15%, 72.72%, 83.15% and 82.5%, 62.5%, 77.34% for color, BOD and COD respectively. Similarly for iron nano particle, the removal efficiency was found to be 60.3%, 65%, 67.43% and 57.06%, 57.27%, 67% for the removal of color, BOD and COD in CYL and ALL, respectively.</p>


2018 ◽  
Vol 34 (6) ◽  
pp. 2747-2754 ◽  
Author(s):  
Masoud Nasiri Zarandi ◽  
Amirhossein Soltani

The purpose of this study was to investigate the extraction of lead by emulsion liquid membrane as an effective alternative to conventional lead extraction methods. The emulsion included D-2-ethylhexyl phosphoric acid (D2EHPA) as a carrier, paraffin and kerosene composition as an organic solvent, Span 80 as an emulsifier and sulfuric acid as an internal stripping phase. In this project, 7 effective factors in extraction of lead were chosen by emulsion liquid membrane, which included concentration of sulfuric acid in the internal phase, volume ratio of the emulsion to external phase (Rew), the ratio of organic phase to internal phase (Roi), initial pH of external phase, contact time of the emulsion and external phase, carrier concentration and concentration of surfactant in the membrane phase. After the initial experiments to make a stable emulsion, membrane phase mix (70% paraffin and 30% kerosene), homogenizer speed (12000 rpm) and mixer speed (309 rpm) were selected. The final experiments were designed by Taguchi statistical method. Optimization was done according to higher extraction rate and the effect of each of these factors and their optimal values as well as optimal conditions were determined. By verification test, it was shown that more than 92% of lead can be extracted from a solution with a concentration of 2000 ppm.


Author(s):  
Khadija Qureshi ◽  
Kashif Hussain Mangi ◽  
Zulfiqar Ali Solangi ◽  
Zulfiqar Ali Bhatii ◽  
Mukhtiar Ali ◽  
...  

Arsenic is a carcinogenic element capable to get into water bodies and drinking water supplies from natural deposits and industrial practices. Its presence in drinking underground water is highly toxic to human health. The study is focused on the development of indigenous Iron-Coated Pottery Granules (ICPG) to remove As from groundwater of Hala City. The developed ICPG was agitated with local clay white flour and water. A low-cost adsorbent namely ICPG was synthesized for the expulsion of As from underground water. The ICGP was characterized with SEM and FTIR techniques. Furthermore, the impact of physical parameters including adsorbate concentration, dosage, mixing time, pH, and contact time on As removal efficiency was investigated in batch experiments. The maximum removal efficiency was achieved with an adsorbent dosage of 0.5 grams at pH =7 for a contact time of 90 minutes when agitated at a speed of 150 r/min. The arsenic removal efficiency was found highly dependent on contact time increase and optimum pH (maximum removal achieved at strong adsorption of As at pH 4–7), however, the rise of adsorbate concentration resulted in the decrement in the efficiency after certain range. Batch adsorption study of underground water sample collected from Hala, Sindh, Pakistan was performed with satisfactory results, i.e. 94 arsenic removal from water. All the water samples were analyzed through atomic absorption Spectrophotometer. The investigation has indicated that ICPG is an exceptionally favourable material for As removal from drinking underground water and can be applied to handle the arsenic issue in most of the regions of Sindh province.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7045
Author(s):  
Justyna Kazmierczak-Razna ◽  
Anetta Zioła-Frankowska ◽  
Piotr Nowicki ◽  
Marcin Frankowski ◽  
Robert Wolski ◽  
...  

This paper deals with the adsorption of heavy metal ions (Cu2+ and Zn2+) on the carbonaceous materials obtained by chemical activation and ammoxidation of Polish brown coal. The effects of phase contact time, initial metal ion concentration, solution pH, and temperature, as well as the presence of competitive ions in solution, on the adsorption capacity of activated carbons were examined. It has been shown that the sample modified by introduction of nitrogen functional groups into carbon structure exhibits a greater ability to uptake heavy metals than unmodified activated carbon. It has also been found that the adsorption capacity increases with the increasing initial concentration of the solution and the phase contact time. The maximum adsorption was found at pH = 8.0 for Cu(II) and pH = 6.0 for Zn(II). For all samples, better fit to the experimental data was obtained with a Langmuir isotherm than a Freundlich one. A better fit of the kinetic data was achieved using the pseudo-second order model.


2015 ◽  
Vol 1113 ◽  
pp. 376-381 ◽  
Author(s):  
Norul Fatiha Mohamed Noah ◽  
N. Othman ◽  
Siti Khadijah Bachok ◽  
Nurul Ashida Abdullah

Palladium is a rare precious metal with unique physical properties that are used in diverse industrial applications and in jewellery. Due to its economic value and its limited natural resources, palladium recovery from secondary resources has assumed a great significance. Therefore, this study investigated the possibility of using Emulsion Liquid Membrane (ELM) process for the extraction of palladium from simulated wastewater. The experiment was conducted using a mixer-settler in a batch system using 0.1 M Cyanex 302 in kerosene as a new carrier for palladium and 1.0 M Thiourea in 1.0 M H2SO4as a stripping agent. The effect towards membrane stability of different parameter such as surfactant concentration, emulsifying time and agitation speed has been attempted. The results show that at favourable condition of 2% w/v of span 80, 3 minutes emulsifying time, and 200 rpm agitation speed, 94% of palladium was extracted. Hence, ELM is proven to be a very promising technique for the extraction of palladium from wastewater.


2020 ◽  
Vol 1002 ◽  
pp. 423-434 ◽  
Author(s):  
Muayad A. Shihab ◽  
Amer Talal Nawaf ◽  
Shaho A. Mohamedali ◽  
Mazin N. Alsalmaney

This work was focused on the removal of sulfur compounds via adsorption process from heavy naphtha using alkali agents-activated carbon nanotubes (ACNTs). Commercial CNTs were activated using three alkali agents (KOH, NaOH, and CaCl2) to amend their surfaces for application in the petroleum industry. The characterization of the physicochemical properties of as-received CNTs and CNTs/alkali agents was performed using a scanning electron microscope (SEM), N2 adsorption/desorption isotherm, and Fourier transform infrared spectroscopy (FTIR). The effects of three operating conditions including adsorbent dosage (1-3 g), agitation speed (330-1500 rpm), and contact time (30-70 min) on the removal efficiency of sulfur compounds at constant pressure and temperature were investigated. Studying of the removal efficiency at different operating conditions was adopted to effectively evaluate the surface modifications of adsorbents on the present process. The specific surface areas of the CNTs were found to be increased upon treatment with alkali agents especially KOH and NaOH. SEM images demonstrated the formation of many defects on the CNTs surface due to the strong etching effect of both alkali agents KOH and NaOH. FTIR spectra showed different relative intensities around band 3440 cm-1 for CNTs/KOH and CNTs/NaOH which was potentially attributed to the presence of hydroxyl functional groups. The sulfur removal experiments from heavy naphtha (initially had a sulfur concentration of 350 ppm) showed that the largest sulfur removal efficiency and adsorption capacity were 69.6% and 6.6 mg/g adsorbent respectively and obtained with CNTs/KOH which presented a superior adsorption efficiency over others. The highest sulfur removal efficiency was gained at adsorbent dosage=3 g, agitation speed=1500 rpm, and contact time=70 min. The study of adsorption kinetics demonstrated that the adsorption of organosulfur compounds from heavy naphtha obeyed the pseudo-second order kinetics


Sign in / Sign up

Export Citation Format

Share Document