Reliability Modeling for Ball Grid Array Assembly With a Large Number of Warpage Affected Solder Joints

2002 ◽  
Vol 124 (3) ◽  
pp. 246-253 ◽  
Author(s):  
Y. W. Chan ◽  
T. H. Ju ◽  
Saeed A. Hareb ◽  
Y. C. Lee ◽  
Jih-Shun Wu ◽  
...  

A reliability model is established to study thermal fatigue behavior of solder joints in plastic ball grid array (PBGA) assemblies. The model is able to simulate a configuration with a large number of warpage affected solder joints. For efficient computation, regression models are used to calculate the force acting on each solder joint to determine its height under different warpage conditions. With the height and specified solder parameters, the shapes of selected solder joints are calculated using the Surface Evolver. In addition, the displacements of these solder joints can be determined by a macro model using equivalent beams to represent hundreds of solder joints. With the shapes and displacements, three-dimensional micro models for the selected joints are established to compute strain energy densities during temperature cycling. The energy densities can be used to estimate fatigue lives through an empirical correlation. Two PBGA assemblies with 72-I/O cavity-up and 540-I/O cavity-down packages are studied using the reliability model. Silicon chip size and substrate thickness are critical to solder fatigue in the cavity-up assembly. Their effects are reduced substantially for the cavity-down assembly, which is more reliable due to small global thermal mismatch. However, its reliability is strongly affected by the warpage. The warpage changes the shapes of solder joints and can reduce the corner joint’s fatigue life from 20,000 to 7800 temperature cycles for an arch-type warpage of 0.28 mm across a 42.5 mm×42.5 mm region.

2013 ◽  
Vol 706-708 ◽  
pp. 1693-1696
Author(s):  
Hua Bin Zhao ◽  
De Jian Zhou

In the study of three-dimensional shape prediction of SMT solder joints, the software Surface Evolver has been widely applied as a quick and accurate effective tool for the prediction of solder joints shape. But the model it builds is not able to be directly imported into any finite element analysis software like ANSYS, and even after the import it still needs a lot of time to mend the import model. For this issue, to predict of the solder joints shape of ball grid array (BGA), the implement programs of three conversion methods of point-line-area method, axisymmetric method and infinitesimal method are given. By comparison, axisymmetric method and infinitesimal method are more suitable for the shape conversion of BGA solder joints.


2005 ◽  
Vol 127 (4) ◽  
pp. 466-473 ◽  
Author(s):  
B. L. Chen ◽  
X. Q. Shi ◽  
G. Y. Li ◽  
K. H. Ang ◽  
Jason P. Pickering

In this study, a thermoelectric cooler-based rapid temperature cycling (RTC) testing method was established and applied to assess the long term reliability of solder joints in tape ball grid array (TBGA) assembly. This RTC testing methodology can significantly reduce the time required to determine the reliability of electronic packaging components. A three-parameter Weibull analysis characterized with a parameter of failure free time was used for assembly reliability assessment. It was found that the RTC not only speedily assesses the long-term reliability of solder joints within days, but also has the similar failure location and failure mode observed in accelerated temperature cycling (ATC) test. Based on the RTC and ATC reliability experiments and the modified Coffin-Manson equation, the solder joint fatigue predictive life can be obtained. The simulation results were found to be in good agreement with the test results from the RTC. As a result, a new reliability assessment methodology was established as an alternative to ATC for the evaluation of long-term reliability of electronic packages.


2014 ◽  
Vol 936 ◽  
pp. 628-632 ◽  
Author(s):  
Guo Zheng Yuan ◽  
Xia Chen ◽  
Xue Feng Shu

The failure of plastic ball grid array under intense dynamic loading was studied in the project. This paper presents the drop test reliability results of SnPb flip-chip on a standard JEDEC drop reliability test board. The failure mode and mechanism of planar array package in the drop test was comprehensively analyzed. High acceleration dropping test method was used to research the reliability of BGA (ball grid array) packages during the free-drop impact process. The model RS-DP-03A drop device was used to simulate the falling behavior of BGA chip packages under the real conditions, The drop condition meets the JEDEC22-B111 standards (pulse peak 1500g, pulse duration 0.5 ms) when dropping from the 650mm height . In the testing, according to the real-time changes of dynamic voltage, the relationship between drop times and different phases of package failure was analyzed. With the dye-penetrated method and optical microscopy, it was easy to observe the internal crack and failure locations. The growth mechanism of the cracks in solder joints under the condition of drop-free was analyzed and discussed.


2012 ◽  
Vol 2012 (DPC) ◽  
pp. 000542-000553
Author(s):  
Betty H. Yeung ◽  
Torsten Hauck ◽  
Brett Wilkerson ◽  
Thomas Koschmieder

The solder joint reliability of semiconductor package interconnects is critical to product durability. A dominant failure mode is solder fatigue due to the CTE mismatch between BGA component and PCB at thermal cycling. It is well known that besides thermal expansion mismatch of component and board, the solder joint geometry has a great impact on fatigue behavior and time to failure. In this study, a combination of Surface Evolver and finite element analysis are use to predict the solder joint shapes for the assembly of medium pin count BGA's and to estimate the reliability at accelerated temperature cycling conditions. Results of Surface Evolver are compared with the assumption of a truncated sphere. The solder shape predictions are applied for a subsequent thermo-mechanical analysis of the BGA assembly. Inelastic creep deformation is evaluated for critical solder balls, and the Coffin-Manson relation is used to estimate the solder joint lifetime. The entire simulation procedure will be demonstrated for a product design study for high reliability automotive BGA's. A fractional factorial design is defined that considers solder sphere diameter and solder pad sizes on BGA substrate and on PCB side. Resulting creep values and lifetime estimates will be compared.


2012 ◽  
Vol 2012 (1) ◽  
pp. 000531-000534 ◽  
Author(s):  
Fei Chai ◽  
Michael Osterman ◽  
Michael Pecht

Solder interconnect failure is a known life limiting failure mechanism that is induced by cyclic temperature excursions. Thermal fatigue reliability of solder interconnects is conventionally assessed by simple temperature cycling test, which applies a constant temperature range, fixed dwell times and ramp rates during the test. However, due to the user controlled power cycles, non-constant workloads, and changes in the surrounding environment, electronics in the field often experience a complex combination of temperature and power cycling. In this study, the effect of power cycling superposed on a simple temperature cycling is experimentally examined. Furthermore, a scheme for modeling the solder interconnect fatigue life of Plastic Ball Grid Array (PBGA) parts under the concurrent power and temperature cycling. Damage, defined as the number of applied cycles over the number of survivable cycles, from the simple temperature cycle and the power cycle are linearly added using Miner's rule, and compared with the concurrent temperature and power cycling test. Cycles to failure of each condition is derived by life testing conducted on Plastic Ball Grid Array (PBGA) assembled with eutectic and SAC305 solder.


Author(s):  
T. E. Wong ◽  
C. Y. Lau ◽  
L. A. Kachatorian ◽  
H. S. Fenger ◽  
I. C. Chen

The objective of the present study is to evaluate the impact of electronic packaging design/manufacturing process parameters on the thermal fatigue life of ball grid array (BGA) solder joints. The four selected parameters are BGA under-fill materials, conformal coating, solder pad sizes on printed wiring board, and BGA rework, with each having either two or three levels of variation. A test vehicle (TV), on which various sizes of BGA daisy-chained packages are soldered, is first designed and fabricated, and then subjected to temperature cycling (−55°C to +125°C) with continuous monitoring of solder joint integrity. The total of 15 experimental cases is used in the present study. Based on monitored results, a destructive physical analysis is conducted to further isolate the failure locations and determine the failure mechanisms of the solder joints. Test results indicate that the influence of these design parameters on fatigue life is dependent on the particular package, in some instances improving the fatigue life tenfold.


Sign in / Sign up

Export Citation Format

Share Document