Rotation Effects on Vibration of Structures Seen From a Rotating Beam Simply Supported off the Rotation Axis

2005 ◽  
Vol 128 (3) ◽  
pp. 328-337 ◽  
Author(s):  
J. Kim

In rotating beams, the Coriolis force acts through the mass and rotary inertias of the beam. A rotating beam simply supported off the axis of rotation is used as an example to study effects of this Coriolis force on vibration of structures. By adopting such a simple model, mass- and rotary inertia-induced terms in the free vibration responses can be obtained in separate, closed forms. The effect of each of these terms on vibration characteristics of the rotating beam is discussed in relation to parameters such as nonrotating natural frequencies, the rotation speed, and the slenderness ratio. Practical implications of these results in analyses of rotating structures of other types are discussed, for example estimating the significance of rotary inertias in relation to the slenderness ratio and the rotation speed.

Author(s):  
Mustafa A. Acar ◽  
Steven W. Shaw ◽  
Brian F. Feeny

We consider the nonlinear vibration response of rotating flexible shafts fitted with centrifugally driven pendulum vibration absorbers (CPVAs) that are used to address engine-order torsional vibrations. The model used to represent the behavior of the flexible shaft consists of two lumped inertial elements with an interconnecting stiffness element, which captures the rigid body and fundamental torsional vibration modes of the rotor. The absorbers are centrifugally driven pendulums fitted to a rotor element, such that their natural frequencies scale with the rotor speed, and can thus tuned to a given order of rotation. Previous analysis of a linearized version of this coupled rotor-absorber system revealed frequency veering behavior as the rotation speed varies, and showed that one can detune the absorber to eliminate key system resonances. In this paper the behavior of the system is analyzed for large absorber amplitudes using perturbation methods and numerical simulations. It is shown that the absorbers remain effective in reducing torsional vibration when moving through large amplitudes, and that the resonance avoidance is similarly robust. This has practical implications for the tuning of absorbers in certain applications.


2012 ◽  
Vol 79 (6) ◽  
Author(s):  
Sandilya Kambampati ◽  
Ranjan Ganguli ◽  
V. Mani

In this paper we look for nonuniform rotating beams that are isospectral to a given uniform nonrotating beam. A rotating nonuniform beam is isospectral to the given uniform nonrotating beam if both the beams have the same spectral properties, i.e., both the beams have the same set of natural frequencies under a given boundary condition. The Barcilon-Gottlieb type transformation is proposed that converts the governing equation of a rotating beam to that of a uniform nonrotating beam. We show that there exist rotating beams isospectral to a given uniform nonrotating beam under some special conditions. The boundary conditions we consider are clamped-free and hinged-free with an elastic hinge spring. An upper bound on the rotation speed for which isospectral beams exist is proposed. The mass and stiffness distributions for these nonuniform rotating beams which are isospectral to the given uniform nonrotating beam are obtained. We use these mass and stiffness distributions in a finite element analysis to show that the obtained beams are isospectral to the given uniform nonrotating beam. A numerical example of a beam having a rectangular cross section is presented to show the application of our analysis.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4705
Author(s):  
Julian Lich ◽  
Tino Wollmann ◽  
Angelos Filippatos ◽  
Maik Gude ◽  
Juergen Czarske ◽  
...  

Due to their lightweight properties, fiber-reinforced composites are well suited for large and fast rotating structures, such as fan blades in turbomachines. To investigate rotor safety and performance, in situ measurements of the structural dynamic behaviour must be performed during rotating conditions. An approach to measuring spatially resolved vibration responses of a rotating structure with a non-contact, non-rotating sensor is investigated here. The resulting spectra can be assigned to specific locations on the structure and have similar properties to the spectra measured with co-rotating sensors, such as strain gauges. The sampling frequency is increased by performing consecutive measurements with a constant excitation function and varying time delays. The method allows for a paradigm shift to unambiguous identification of natural frequencies and mode shapes with arbitrary rotor shapes and excitation functions without the need for co-rotating sensors. Deflection measurements on a glass fiber-reinforced polymer disk were performed with a diffraction grating-based sensor system at 40 measurement points with an uncertainty below 15 μrad and a commercial triangulation sensor at 200 measurement points at surface speeds up to 300 m/s. A rotation-induced increase of two natural frequencies was measured, and their mode shapes were derived at the corresponding rotational speeds. A strain gauge was used for validation.


2020 ◽  
Vol 11 (1) ◽  
pp. 127
Author(s):  
Fuchun Yang ◽  
Dianrui Wang

Vibration properties of high-speed rotating and revolving planet rings with discrete and partially distributed stiffnesses were studied. The governing equations were obtained by Hamilton’s principle based on a rotating frame on the ring. The governing equations were cast in matrix differential operators and discretized, using Galerkin’s method. The eigenvalue problem was dealt with state space matrix, and the natural frequencies and vibration modes were computed in a wide range of rotation speed. The properties of natural frequencies and vibration modes with rotation speed were studied for free planet rings and planet rings with discrete and partially distributed stiffnesses. The influences of several parameters on the vibration properties of planet rings were also investigated. Finally, the forced responses of planet rings resulted from the excitation of rotating and revolving movement were studied. The results show that the revolving movement not only affects the free vibration of planet rings but results in excitation to the rings. Partially distributed stiffness changes the vibration modes heavily compared to the free planet ring. Each vibration mode comprises several nodal diameter components instead of a single component for a free planet ring. The distribution area and the number of partially distributed stiffnesses mainly affect the high-order frequencies. The forced responses caused by revolving movement are nonlinear and vary with a quasi-period of rotating speed, and the responses in the regions supported by partially distributed stiffnesses are suppressed.


2014 ◽  
Vol 709 ◽  
pp. 148-152
Author(s):  
Guo Qing Zhou ◽  
Ji Wang ◽  
Song Xiang

Sinusoidal shear deformation theory is presented to analyze the natural frequencies of simply supported laminated composite plates. The governing differential equations based on sinusoidal theory are solved by a Navier-type analytical method. The present results are compared with the available published results which verify the accuracy of sinusoidal theory.


2014 ◽  
Vol 21 (4) ◽  
pp. 571-587 ◽  
Author(s):  
Hamid Reza Saeidi Marzangoo ◽  
Mostafa Jalal

AbstractFree vibration analysis of functionally graded (FG) curved panels integrated with piezoelectric layers under various boundary conditions is studied. A panel with two opposite edges is simply supported, and arbitrary boundary conditions at the other edges are considered. Two different models of material property variations based on the power law distribution in terms of the volume fractions of the constituents and the exponential law distribution of the material properties through the thickness are considered. Based on the three-dimensional theory of elasticity, an approach combining the state space method and the differential quadrature method (DQM) is used. For the simply supported boundary conditions, closed-form solution is given by making use of the Fourier series expansion, and applying the differential quadrature method to the state space formulations along the axial direction, new state equations about state variables at discrete points are obtained for the other cases such as clamped or free-end conditions. Natural frequencies of the hybrid curved panels are presented by solving the eigenfrequency equation, which can be obtained by using edges boundary conditions in this state equation. The results obtained for only FGM shell is verified by comparing the natural frequencies with the results obtained in the literature.


Author(s):  
L. T. Lee ◽  
W. F. Pon

Abstract Natural frequencies of parallelogrammic plates are obtained by employing a set of beam characteristic orthogonal polynomials in the Rayleigh-Ritz method. The orthogonal polynomials are generalted by using a Gram-Schmidt process, after the first member is constructed so as to satisfy all the boundary conditions of the corresponding beam problems accompanying the plate problems. The strain energy functional and kinetic energy functionals are transformed from Cartesian coordinate system to a skew coordinate system. The natural frequencies obtained by using the orthogonal polynomial functions are compared with those obtained by other methods with all four edges clamped boundary conditions and greet agreements are found between them. The natural frequencies for parallelogrammic plates with other boundary conditions, such as four edges simply supported, clamped-free and simply supported-free, are also obtained. This method is considered as a better and accurate comprehensive treatment for this type of problems.


2000 ◽  
Author(s):  
Moreshwar Deshpande ◽  
C. D. Mote

Abstract A model for the in-plane oscillations of a thin rotating disk has been derived using a nonlinear strain measure to calculate the disk energy. This accounts for the stiffening of the disk due the radial expansion resulting from its rotation. The corresponding non-dimensionalized natural frequencies are seen to depend only on rotation speed and have been calculated. The radially expanded disk configuration is linearly stable over the range of rotation speeds studied here. The sine and cosine modes for all nodal diameters couple to each other at all nonzero rotation speeds and the strength of this coupling increases with rotation speed. This coupling causes the reported frequencies of the stationary disk to split. The zero, one and two nodal diameter in-plane modes do not have a critical speed corresponding to the vanishing of the backward travelling wave frequency. The use of a linear strain measure in earlier work incorrectly predicts instability of the rotating equilibrium and the existence of critical speeds in these modes.


Author(s):  
Lyn M. Greenhill ◽  
Valerie J. Lease

Traditional rotor dynamics analysis programs make the assumption that disk components are rigid and can be treated as lumped masses. Several researchers have studied this assumption with specific analytical treatments designed to simulate disk flexibility. The general conclusions reached by these studies indicated disk flexibility has little effect on critical speeds but significantly influences natural frequencies. This apparent contradiction has been reexamined by using axisymmetric harmonic finite elements to directly represent both disk and shaft flexibility along with gyroscopic effects. Results from this improved analysis show that depending on the thickness-to-diameter (slenderness) ratio of the disk and the axial position of the disk on the shaft, there are significant differences in all natural frequencies, for both forward and backward modes, including synchronous crossings at critical speeds.


2014 ◽  
Vol 592-594 ◽  
pp. 2041-2045 ◽  
Author(s):  
B. Naresh ◽  
A. Ananda Babu ◽  
P. Edwin Sudhagar ◽  
A. Anisa Thaslim ◽  
R. Vasudevan

In this study, free vibration responses of a carbon nanotube reinforced composite beam are investigated. The governing differential equations of motion of a carbon nanotube (CNT) reinforced composite beam are presented in finite element formulation. The validity of the developed formulation is demonstrated by comparing the natural frequencies evaluated using present FEM with those of available literature. Various parametric studies are also performed to investigate the effect of aspect ratio and percentage of CNT content and boundary conditions on natural frequencies and mode shapes of a carbon nanotube reinforced composite beam. It is shown that the addition of carbon nanotube in fiber reinforced composite beam increases the stiffness of the structure and consequently increases the natural frequencies and alter the mode shapes.


Sign in / Sign up

Export Citation Format

Share Document