Particle Volumetric Residence Time Calculations in Arterial Geometries

1996 ◽  
Vol 118 (2) ◽  
pp. 158-164 ◽  
Author(s):  
Mads J. Kunov ◽  
D. A. Steinman ◽  
C. Ross Ethier

The quantification of particle (platelet) residence times in arterial geometries is relevant to the pathogenesis of several arterial diseases. In this manuscript, the concept of “volumetric residence time” (VRT) is introduced. The VRT takes into account where particles accumulate and how long they remain there, and is wellsuited to characterizing particle distributions in the complex geometries typical of the cardiovascular system. A technique for the calculation of volumetric residence time is described, which assumes that platelets are neutrally buoyant passive tracer particles, and which tracks small Lagrangian fluid elements containing a uniform concentration of platelets. This approach is used to quantify particle (platelet) residence times in the region of a modeled stenosis with a 45 percent area reduction. Residence time distributions are computed for a representative population of platelets, and for a subpopulation assumed to be “activated” by exposure to shear stresses above a threshold value. For activated platelets, high particle residence times were observed just distal to the apex of the stenosis throat, which can be explained by the presence of high shear stresses and low velocities in the throat immediately adjacent to the vessel wall. Interestingly, the separation zone distal to the stenosis showed only modestly elevated residence times, due to its highly mobile and transient nature. This calculation demonstrates the utility of the VRT concept for cardiovascular studies, particularly if a subpopulation of all particles is to be tracked. We conclude that the volumetric residence time is a useful tool.

Author(s):  
M. C. Kim ◽  
C. S. Lee ◽  
C. J. Kim

Blood flow in arteries is known to be closely related to atherosclerosis. Presence of recirculation zones, and low, high, and oscillatory wall shear stresses have been suggested to be important fluid dynamic factors causing development and progress of atherosclerosis. Our study was motivated to develop fluid mechanical indices between residence time of blood particles in arteries and atherosclerosis. In rigid models of stenosed arteries with 75% area reduction, trajectories of blood particles were numerically computed and used to determine local volumetric residence time (VRT) of platelets. The motion of particles in the model artery was computed by considering viscous drag forces between blood particles and presolved transient flow field from computational fluid dynamics (CFD). Many cardiac cycles were considered in the computation to reflect temporally accumulative characteristics of VRT in the recirculation zones. Our results showed that VRT in the recirculation zone was relatively low in the first cardiac cycle. However it increased in the subsequent cycles as more particles were trapped in the same zone. The results suggested that VRT contour calculated in the present study would be an effective indicator of the presence of atherosclerosis.


2019 ◽  
Vol 42 (12) ◽  
pp. 725-734 ◽  
Author(s):  
Christian Loosli ◽  
Stephan Rupp ◽  
Bente Thamsen ◽  
Mathias Rebholz ◽  
Gerald Kress ◽  
...  

Pulsatile positive displacement pumps as ventricular assist devices were gradually replaced by rotary devices due to their large volume and high adverse event rates. Nevertheless, pulsatile ventricular assist devices might be beneficial with regard to gastrointestinal bleeding and cardiac recovery. Therefore, aim of this study was to investigate the flow field in new pulsatile ventricular assist devices concepts with an increased pump frequency, which would allow lower stroke volumes to reduce the pump size. We developed a novel elliptically shaped pulsatile ventricular assist devices, which we compared to a design based on a circular shape. The pump size was adjusted to deliver similar flow rates at pump frequencies of 80, 160, and 240 bpm. Through a computational fluid dynamics study, we investigated flow patterns, residence times, and wall shear stresses for different frequencies and pump sizes. A pump size reduction by almost 50% is possible when using a threefold pump frequency. We show that flow patterns inside the circular pump are frequency dependent, while they remain similar for the elliptic pump. With slightly increased wall shear stresses for higher frequencies, maximum wall shear stresses on the pump housing are higher for the circular design (42.2 Pa vs 18.4 Pa). The calculated blood residence times within the pump decrease significantly with increasing pump rates. A smaller pump size leads to a slight increase of wall shear stresses and a significant improvement of residence times. Hence, high-frequency operation of pulsatile ventricular assist devices, especially in combination with an elliptical shape, might be a feasible mean to reduce the size, without any expectable disadvantages in terms of hemocompatibility.


DYNA ◽  
2019 ◽  
Vol 86 (211) ◽  
pp. 241-248
Author(s):  
Francisco Fernando Garcia Renteria ◽  
Mariela Patricia Gonzalez Chirino

In order to study the effects of dredging on the residence time of the water in Buenaventura Bay, a 2D finite elements hydrodynamic model was coupled with a particle tracking model. After calibrating and validating the hydrodynamic model, two scenarios that represented the bathymetric changes generated by the dredging process were simulated. The results of the comparison of the simulated scenarios, showed an important reduction in the velocities fields that allow an increase of the residence time up to 12 days in some areas of the bay. In the scenario without dredging, that is, with original bathymetry, residence times of up to 89 days were found.


2021 ◽  
Author(s):  
Iva Kůrková ◽  
Jiří Bruthans

<p>Localities containing karst features were studied in the northwestern part of Bohemian Cretaceous Basin. Namely Turnov area in facies transition between coarse-delta sandstones and marlstones (Jizera Formation, Turonian) and Miskovice area in limestones and sandy limestones - sandstones (Peruc-Korycany Formation, Cenomanian). Evolution of karst conduits is discussed elsewhere (Kůrková et al. 2019).</p><p>In both localities, disappearing streams, caves and karst springs with maximum discharge up to 100 L/s were documented. Geology and hydrogeology of this area was studied from many points of view to describe formation of karst conduits and characterize groundwater flow. Tracer tests were performed using NaCl and Na-fluoresceine between sinkholes and springs under various flow rates to evaluate residence times of water in conduits and to describe geometry of conduits. Breatkthrough curves of tracer tests were evaluated by means of Qtracer2 program (Field 2002). Groundwater flow velocity in channels starts at 0.6 km/day during low water levels up to 15 km/day during maximum water levels, the velocity increases logarithmically as a function of discharge. Similar karst conduits probably occur in other parts of Bohemian Cretaceous Basin where lot of large springs can be found.</p><p>Mean residence time of difussed flow based on tritium, CFC and SF<sub>6</sub> sampled at karst springs is 20 years for 75% of water and 100 years for remaining 25%, based on binary mixing dispersion model. This shows that most of the water drained by karst conduits is infiltrated through the soil and fractured environment with relatively high residence time. Residence times in different types of wells and springs were also measured in whole north-western part of Bohemian Cretaceous Basin. Results indicate long residence times in semi-stagnant zones represented by monitoring wells and short residence times in preferential zones represented by springs and water-supply wells.</p><p> </p><p>Research was funded by the Czech Science Foundation (GA CR No. 19-14082S), Czech Geological Survey – internal project 310250</p><p> </p><p>Field M. (2002): The QTRACER2 program for Tracer Breakthrough Curve Analysis for Tracer Tests in Karstic Aquifers and Other hydrologic Systems. – U.S. Environmental protection agency hypertext multimedia publication in the Internet at http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=54930.</p><p>Kůrková I., Bruthans J., Balák F., Slavík M., Schweigstillová J., Bruthansová J., Mikuš P., Grundloch J. (2019): Factors controlling evolution of karst conduits in sandy limestone and calcareous sandstone (Turnov area, Czech Republic). Journal of Hydrology: 574: 1062-1073</p>


1964 ◽  
Vol 17 (8) ◽  
pp. 821 ◽  
Author(s):  
RCL Bosworth ◽  
CM Groden

When a reacting substance or mixture is caused to flow in a cylindrical reactor, all portions of the stream will not flow at the same rate and will exhibit different residence times and, accordingly, are subject to different extents of degrees of reaction. The average degrees of reaction following the residence time distribution proper to laminar flow are given in the earlier publication1 and this paper extends the treatment to that of turbulent flow. In the earlier treatment of laminar flow the ratio of average extent of reaction with non-interacting streams to that of complete intermingling, or the C/Cm, is plotted against the ratio of the times of flow with those of reaction (S). The C/Cm versus S curves are all above unity and increase with increasing S, with the exception of very high orders of chemical reaction for which values of C/Cm are all unity. In the case of turbulent flow the values of C/Cm are more nearly unity at all values of S.


1996 ◽  
Vol 10 (23n24) ◽  
pp. 3073-3080 ◽  
Author(s):  
KUNQUAN LU ◽  
WEIJIA WEN ◽  
CHENXI LI

The frequency dependence of the shear stress in ac field and the non-linear dielectric property of ER fluid have been studied. We find that the shear stresses of some water-free ER fluids increase monotonously with the frequency and tend to reach saturated values at high frequency. The measurements on KNbO 3/silicone ER fluid show that the shear stresses under 103 Hz frequency a.c. field are several times or even an order larger than that under d.c. field for the same field strength. The studies of non-linear dielectric properties of ER fluids show that the permittivity of ER fluid increases linearly with increasing field strength when the electric field exceeds a threshold value E 1 and tends to a saturated constant beyond a high field strength E 2. Correspondingly the current density follows linear behavior no longer in the region between E 1 and E 2. A model based on the rearrangement of the particles under the electric field. which causes the variation of the dielectric property of the ER fluid, is proposed and the analysis is consistent with the measured results.


Perfusion ◽  
2000 ◽  
Vol 15 (6) ◽  
pp. 485-494 ◽  
Author(s):  
J W Mulholland ◽  
W Massey ◽  
J C Shelton

Blood is exposed to various dynamic forces during cardiopulmonary bypass (CPB). Understanding the damaging nature of these forces is paramount for research and development of the CPB circuit. The object of this study was to identify the most damaging dynamic non-physiological forces and then quantify this damage. A series of in vitro experiments simulated the different combinations of dynamic forces experienced during CPB while damage to the blood was closely monitored. A combination of air interface ( a) and negative pressure ( P) caused the greatest rate of change in plasma Hb (Δp Hb) (4.94 10-3 mg/dl/s) followed by negative pressure and then an air interface. Shear stresses, positive pressures, wall impact forces and a blood-nonendothelial surface caused the least damage (0.26 10-3 mg/dl/s). An air interface showed no threshold value for blood damage, with the relationship between the size of the interface and the blood damage modelled by a second-order polynomial. However, negative pressure did exhibit a threshold value at -120 mmHg, beyond which point there was a linear relationship. Investigating the reasons for the increased blood trauma caused by the low-pressure suction (LPS) system makes it clear how research into minimizing or completely avoiding certain forces must be the next step to advancing extracorporeal technology.


1997 ◽  
Vol 48 (5) ◽  
pp. 371 ◽  
Author(s):  
Philip H. Towler ◽  
J. David Smith

The residence time of particulate and dissolved 210Pb in the upper layer of the western equatorial Pacific Ocean is examined. Activities of dissolved 226Ra, dissolved and particulate 210Pb, and particulate 210Po were determined to a depth of 300 m in a series of depth profiles collected along a transect across the equator at 155˚E in November 1993. Total 210Pb in the surface water decreased from 2·7 Bq m-3 at 10˚N to 1·8 Bq m-3 at 10˚S. Dissolved 210Pb generally decreased with depth but showed subsurface (100–150 m) maxima at 10˚N and 5˚N. The nutrient concentrations at 300 m were highest at these stations, suggesting some degree of upwelling. Calculations indicate that the residence times of dissolved (<0·45 µm) and particulate (>0·45 µm) 210Pb in the top 300 m were 4·6–9·6 years and 0·15–0·29 year respectively.


Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2434
Author(s):  
Guanghai Gao ◽  
Junqiang Xia ◽  
Roger A. Falconer ◽  
Yingying Wang

This paper presents a study of two transport timescales (TTS), i.e., the residence time and exposure time, of a hyper-tidal estuary using a widely used numerical model. The numerical model was calibrated against field measured data for various tidal conditions. The model simulated current speeds and directions generally agreed well with the field data. The model was then further developed and applied to study the two transport timescales, namely the exposure time and residence time for the hyper-tidal Severn Estuary. The numerical model predictions showed that the inflow from the River Severn under high flow conditions reduced the residence and exposure times by 1.5 to 3.5% for different tidal ranges and tracer release times. For spring tide conditions, releasing a tracer at high water reduced the residence time and exposure time by 49.0% and 11.9%, respectively, compared to releasing the tracer at low water. For neap tide conditions, releasing at high water reduced the residence time and exposure time by 31.6% and 8.0%, respectively, compared to releasing the tracer at low water level. The return coefficient was found to be vary between 0.75 and 0.88 for the different tidal conditions, which indicates that the returning water effects for different tidal ranges and release times are all relatively high. For all flow and tide conditions, the exposure times were significantly greater than the residence times, which demonstrated that there was a high possibility for water and/or pollutants to re-enter the Severn Estuary after leaving it on an ebb tide. The fractions of water and/or pollutants re-entering the estuary for spring and neap tide conditions were found to be very high, giving 0.75–0.81 for neap tides, and 0.79–0.88 for spring tides. For both the spring and neap tides, the residence and exposure times were lower for high water level release. Spring tide conditions gave significantly lower residence and exposure times. The spatial distribution of exposure and residence times showed that the flow from the River Severn only had a local effect on the upstream part of the estuary, for both the residence and exposure time.


Sign in / Sign up

Export Citation Format

Share Document