Bifurcations and Chaos in a PD-Controlled Pendulum

1998 ◽  
Vol 120 (1) ◽  
pp. 146-149 ◽  
Author(s):  
Joaqui´n Alvarez ◽  
Fernando Verduzco

The complex dynamics of a pendulum controlled by a Proportional-Derivative (PD) compensator are analyzed. A classification of equilibrium points and the characterization of their bifurcations is also presented. It is shown that the controlled pendulum may exhibit a chaotic behavior when the desired position is periodic and the proportional gain and total dissipation are small enough.

1996 ◽  
Vol 06 (07) ◽  
pp. 1375-1382 ◽  
Author(s):  
CHIEN-CHONG CHEN ◽  
CHYI HWANG ◽  
EDUARDO E. WOLF ◽  
HSUEH-CHIA CHANG

It is shown that the traditional delayed embedding method, which is often applied to measurements at a single spatial point, could only account for partial chaotic dynamics of an extended system. To catch the whole dynamics of an extended system, we apply in this letter the Karhunen-Loeve (K-L) procedure to construct a series of tangent maps from spatially distributed measurements. The tangent maps obtained are then used for computing certain ergodic invariants. The procedure is illustrated with the experimental data obtained from a catalytic wafer, which is a spatially extended system exhibiting complex dynamics. The computed results show clearly that the K-L procedure is more suitable than the delayed embedding method for deciphering the full chaotic behavior of an extended system.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Jing Wang ◽  
Zhenhua Bao ◽  
Junqing Huang ◽  
Yujing Song

This article investigates the dynamics of a mixed triopoly game in which a state-owned public firm competes against two private firms. In this game, the public firm and private firms are considered to be boundedly rational and naive, respectively. Based on both quantity and price competition, the game’s equilibrium points are calculated, and then the local stability of boundary points and the Nash equilibrium points is analyzed. Numerical simulations are presented to display the dynamic behaviors including bifurcation diagrams, maximal Lyapunov exponent, and sensitive dependence on initial conditions. The chaotic behavior of the two models has been stabilized on the Nash equilibrium point by using the delay feedback control method. The thresholds under price and quantity competition are also compared.


Insects ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 640
Author(s):  
Natalia R. Moyetta ◽  
Fabián O. Ramos ◽  
Jimena Leyria ◽  
Lilián E. Canavoso ◽  
Leonardo L. Fruttero

Hemocytes, the cells present in the hemolymph of insects and other invertebrates, perform several physiological functions, including innate immunity. The current classification of hemocyte types is based mostly on morphological features; however, divergences have emerged among specialists in triatomines, the insect vectors of Chagas’ disease (Hemiptera: Reduviidae). Here, we have combined technical approaches in order to characterize the hemocytes from fifth instar nymphs of the triatomine Dipetalogaster maxima. Moreover, in this work we describe, for the first time, the ultrastructural features of D. maxima hemocytes. Using phase contrast microscopy of fresh preparations, five hemocyte populations were identified and further characterized by immunofluorescence, flow cytometry and transmission electron microscopy. The plasmatocytes and the granulocytes were the most abundant cell types, although prohemocytes, adipohemocytes and oenocytes were also found. This work sheds light on a controversial aspect of triatomine cell biology and physiology setting the basis for future in-depth studies directed to address hemocyte classification using non-microscopy-based markers.


Landslides ◽  
2021 ◽  
Author(s):  
Chiara Crippa ◽  
Elena Valbuzzi ◽  
Paolo Frattini ◽  
Giovanni B. Crosta ◽  
Margherita C. Spreafico ◽  
...  

AbstractLarge slow rock-slope deformations, including deep-seated gravitational slope deformations and large landslides, are widespread in alpine environments. They develop over thousands of years by progressive failure, resulting in slow movements that impact infrastructures and can eventually evolve into catastrophic rockslides. A robust characterization of their style of activity is thus required in a risk management perspective. We combine an original inventory of slow rock-slope deformations with different PS-InSAR and SqueeSAR datasets to develop a novel, semi-automated approach to characterize and classify 208 slow rock-slope deformations in Lombardia (Italian Central Alps) based on their displacement rate, kinematics, heterogeneity and morphometric expression. Through a peak analysis of displacement rate distributions, we characterize the segmentation of mapped landslides and highlight the occurrence of nested sectors with differential activity and displacement rates. Combining 2D decomposition of InSAR velocity vectors and machine learning classification, we develop an automatic approach to characterize the kinematics of each landslide. Then, we sequentially combine principal component and K-medoids cluster analyses to identify groups of slow rock-slope deformations with consistent styles of activity. Our methodology is readily applicable to different landslide datasets and provides an objective and cost-effective support to land planning and the prioritization of local-scale studies aimed at granting safety and infrastructure integrity.


2021 ◽  
Vol 3 (3) ◽  
pp. 376-388
Author(s):  
Francisco J. Sevilla ◽  
Andrea Valdés-Hernández ◽  
Alan J. Barrios

We perform a comprehensive analysis of the set of parameters {ri} that provide the energy distribution of pure qutrits that evolve towards a distinguishable state at a finite time τ, when evolving under an arbitrary and time-independent Hamiltonian. The orthogonality condition is exactly solved, revealing a non-trivial interrelation between τ and the energy spectrum and allowing the classification of {ri} into families organized in a 2-simplex, δ2. Furthermore, the states determined by {ri} are likewise analyzed according to their quantum-speed limit. Namely, we construct a map that distinguishes those ris in δ2 correspondent to states whose orthogonality time is limited by the Mandelstam–Tamm bound from those restricted by the Margolus–Levitin one. Our results offer a complete characterization of the physical quantities that become relevant in both the preparation and study of the dynamics of three-level states evolving towards orthogonality.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 733
Author(s):  
Nobutaka Ebata ◽  
Masashi Fujita ◽  
Shota Sasagawa ◽  
Kazuhiro Maejima ◽  
Yuki Okawa ◽  
...  

Gallbladder cancer (GBC), a rare but lethal disease, is often diagnosed at advanced stages. So far, molecular characterization of GBC is insufficient, and a comprehensive molecular portrait is warranted to uncover new targets and classify GBC. We performed a transcriptome analysis of both coding and non-coding RNAs from 36 GBC fresh-frozen samples. The results were integrated with those of comprehensive mutation profiling based on whole-genome or exome sequencing. The clustering analysis of RNA-seq data facilitated the classification of GBCs into two subclasses, characterized by high or low expression levels of TME (tumor microenvironment) genes. A correlation was observed between gene expression and pathological immunostaining. TME-rich tumors showed significantly poor prognosis and higher recurrence rate than TME-poor tumors. TME-rich tumors showed overexpression of genes involved in epithelial-to-mesenchymal transition (EMT) and inflammation or immune suppression, which was validated by immunostaining. One non-coding RNA, miR125B1, exhibited elevated expression in stroma-rich tumors, and miR125B1 knockout in GBC cell lines decreased its invasion ability and altered the EMT pathway. Mutation profiles revealed TP53 (47%) as the most commonly mutated gene, followed by ELF3 (13%) and ARID1A (11%). Mutations of ARID1A, ERBB3, and the genes related to the TGF-β signaling pathway were enriched in TME-rich tumors. This comprehensive analysis demonstrated that TME, EMT, and TGF-β pathway alterations are the main drivers of GBC and provides a new classification of GBCs that may be useful for therapeutic decision-making.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Antonio Marra ◽  
Dario Trapani ◽  
Giulia Viale ◽  
Carmen Criscitiello ◽  
Giuseppe Curigliano

Abstract Triple-negative breast cancer (TNBC) is not a unique disease, encompassing multiple entities with marked histopathological, transcriptomic and genomic heterogeneity. Despite several efforts, transcriptomic and genomic classifications have remained merely theoretic and most of the patients are being treated with chemotherapy. Driver alterations in potentially targetable genes, including PIK3CA and AKT, have been identified across TNBC subtypes, prompting the implementation of biomarker-driven therapeutic approaches. However, biomarker-based treatments as well as immune checkpoint inhibitor-based immunotherapy have provided contrasting and limited results so far. Accordingly, a better characterization of the genomic and immune contexture underpinning TNBC, as well as the translation of the lessons learnt in the metastatic disease to the early setting would improve patients’ outcomes. The application of multi-omics technologies, biocomputational algorithms, assays for minimal residual disease monitoring and novel clinical trial designs are strongly warranted to pave the way toward personalized anticancer treatment for patients with TNBC.


1995 ◽  
Vol 05 (05) ◽  
pp. 1351-1355
Author(s):  
VLADIMIR FEDORENKO

We give a characterization of complex and simple interval maps and circle maps (in the sense of positive or zero topological entropy respectively), formulated in terms of the description of the dynamics of the map on its chain recurrent set. We also describe the behavior of complex maps on their periodic points.


2021 ◽  
Vol 2 (1) ◽  
pp. 49-55
Author(s):  
E U Iwuozo ◽  
J O Enyikwola ◽  
I O Obekpa ◽  
O O Ijachi ◽  
A A Godwin ◽  
...  

Electroencephalography (EEG) remains an important investigative tool in supporting the diagnosis and classification of various seizure types. We sought to examine and characterize the EEG findings from all patients referred for the procedure. This cross-sectional retrospective study was carried out at an EEG unit in Federal Medical Centre, Makurdi, Benue State, North Central Nigeria from May 2016 to December 2020. Relevant patients' information were extracted and analysed using SPSS version 21. A total of 484 patients were seen over the study period with age range of 1-87 years and median age of 23 years. They comprised of 254 (52.5%) male and 230 (47.5%) female. The psychiatrist and the Physicians/Neurologist referred most of them for EEG, 201 (41.5%) and 124 (25.6%) respectively. The most reported indication for EEG was clinical suspicion of seizure disorder 291 (60.1%), whilst some did not have a clear indication 111 (22.9%). About 417 (86.2%) of our patients had abnormal EEG finding out of which 414 (99.3%) were diagnostic of seizure disorder made up of generalized seizure in 255 (61.6%) and focal seizure in 159 (38.4%). About 237 (48.9%) of them were already on antiepileptic drugs (AEDs) at referral of which 190 (80.2%0 were taking carbamazepine. This study showed a high prevalence of abnormal EEG with most of them diagnostic of seizure disorder especially generalized seizure. They were mostly of younger age group with about half of them already on AEDs at referral, majority of who were sent by the Psychiatrist.


2021 ◽  
Vol 31 (08) ◽  
pp. 2130024
Author(s):  
Weisheng Huang ◽  
Xiao-Song Yang

We demonstrate in this paper a new chaotic behavior in the Lorenz system with periodically excited parameters. We focus on the parameters with which the Lorenz system has only two asymptotically stable equilibrium points, a saddle and no chaotic dynamics. A new mechanism of generating chaos in the periodically excited Lorenz system is demonstrated by showing that some trajectories can visit different attractor basins due to the periodic variations of the attractor basins of the time-varying stable equilibrium points when a parameter of the Lorenz system is varying periodically.


Sign in / Sign up

Export Citation Format

Share Document