Frictional Flow Properties of Coal-Oil Slurries at Low Reynolds Number

1986 ◽  
Vol 108 (3) ◽  
pp. 211-213
Author(s):  
E. W. Beans ◽  
K. C. Masiulaniec

The pipe friction factor (f) and the pressure loss coefficient for a 90-deg EL (K90) were measured for coal-oil slurries at Reynolds numbers less than 100. A range of mass fractions (0 to 0.4) was examined for a single particle distribution. The pipe friction factor correlated well with the established relationship for laminar flow (f = 64/ReD) where Reynolds number is based on slurry properties. The loss coefficient for the elbow has a similar correlation.

Author(s):  
Kai-Shing Yang ◽  
Ing-Young Chen ◽  
Bor-Yuan Shew ◽  
Chi-Chuan Wang

In this study, an analysis of the performance of micro nozzle/diffusers is performed and fabrication of the micro nozzle/diffuser is conducted and tested. It is found that the pressure loss coefficient for the nozzle/diffuser decreases with the Reynolds number. At a given Reynolds number, the pressure loss coefficient for nozzle is higher than that of the diffuser due to considerable difference in the momentum change. For the effect of nozzle/diffuser length on the pressure loss coefficient, it is found that the influence is rather small. At a fixed volumetric flowrate, a “minimum” phenomenon of the pressure loss coefficient vs. nozzle/diffuser depth is encountered. This is related to the interactions of velocity change and friction factor. Good agreements of the measured data with the predicted results are found in this study except at a diffuser having an opening angle of 20° . It is likely that the departure of this case to the prediction is due to the separation phenomenon in a larger angle of the diffuser.


Author(s):  
P Suresh Kumar

In the present work an experimental study has been carried out to study the friction factor variation with Reynolds number for laminar flow in a large-hydraulic-diameter pipe and annulus. It is found that for low Reynolds numbers the friction factors are large than those reported in the literature for small-hydraulic-diameter pipe and annulus. Large hydrostatic pressure variation along the circumferential direction causes a different flow pattern in a large-hydraulic-diameter duct and may be why the present results do not match those reported in the literature. A correlation has been proposed in the present paper which is being developed using the present experimental results for both pipe and annulus to correlate the friction factor as a function of Reynolds number and a newly denned Jaga number Jg. An analysis has been carried out using the currently developed friction factor correlations to study how the friction factor will vary for different fluids and different diameters of the pipe and annulus. It is observed that, for high Reynolds numbers ( Re > 100), small-hydraulic-diameter duct and fluids with a large kinematic viscosity, the present correlations show good agreement with the results reported in the literature.


2018 ◽  
Vol 140 (6) ◽  
Author(s):  
Wameedh T. M. Al-Tameemi ◽  
Pierre Ricco

The pressure drop across 90deg sharp-angled miter elbows connecting straight circular pipes is studied in a bespoke experimental facility by using water and air as working fluids flowing in the range of bulk Reynolds number 500<Re<60,000. To the best of our knowledge, the dependence on the Reynolds number of the pressure drop across the miter elbow scaled by the dynamic pressure, i.e., the pressure-loss coefficient K, is reported herein for the first time. The coefficient is shown to decrease sharply with the Reynolds number up to about Re=20,000 and, at higher Reynolds numbers, to approach mildly a constant K=0.9, which is about 20% lower than the currently reported value in the literature. We quantify this relation and the dependence between K and the straight-pipe friction factor at the same Reynolds number through two new empirical correlations, which will be useful for the design of piping systems fitted with these sharp elbows. The pressure drop is also expressed in terms of the scaled equivalent length, i.e., the length of a straight pipe that would produce the same pressure drop as the elbow at the same Reynolds number.


2009 ◽  
Author(s):  
Tim A. Handy ◽  
Evan C. Lemley ◽  
Dimitrios V. Papavassiliou ◽  
Henry J. Neeman

The goal of this study was to determine laminar pressure loss coefficients for flow in microelbows with circular and trapezoidal cross-sections. Flow conditions and pressure losses in these elbows are of interest in microfluidic devices, in porous media, and in other types of microfluidic networks. The literature focuses almost exclusively on loss coefficients due to turbulent flow in macroelbows with very little data on laminar flow in macroelbows. The pressure loss coefficients determined in this study are intended to aid in realistic simulation of existing laminar flow networks or the design of these networks. This study focused on an elbow of constant cross-section with inlet and outlet tubes of sufficient length so as to allow fully developed laminar flow at the entrance to the elbow and at the outlet tube exit. For the circular elbow, both the ratio of elbow radius to inner diameter and inlet Reynolds number were allowed to vary over the ranges of 0.5—10.5 and 1—2500, respectively. The laminar pressure loss coefficients were determined by simulating incompressible flow over the range of geometries and Reynolds numbers in the commercial CFD software FLUENT. The pressure and velocity distributions in the inlet and outlet tubes were averaged at multiple upstream and downstream positions, and were then used to extrapolate the loss coefficient due to the elbow. The results showed that the loss coefficient for larger ratios tended to be higher, in some cases in excess of 100, at low Reynolds number flows, but as the flow approached the transitional regime, the loss coefficients leveled out to roughly their accepted turbulent values of between 0.4 and 1.0. These results show good qualitative and quantitative agreement with limited laminar elbow experimental data available for macroelbows. For the trapezoidal elbows the loss coefficient levels off to about two for Reynolds numbers greater than 100.


2019 ◽  
Vol 30 (7) ◽  
pp. 3827-3842
Author(s):  
Samer Ali ◽  
Zein Alabidin Shami ◽  
Ali Badran ◽  
Charbel Habchi

Purpose In this paper, self-sustained second mode oscillations of flexible vortex generator (FVG) are produced to enhance the heat transfer in two-dimensional laminar flow regime. The purpose of this study is to determine the critical Reynolds number at which FVG becomes more efficient than rigid vortex generators (RVGs). Design/methodology/approach Ten cases were studied with different Reynolds numbers varying from 200 to 2,000. The Nusselt number and friction coefficients of the FVG cases are compared to those of RVG and empty channel at the same Reynolds numbers. Findings For Reynolds numbers higher than 800, the FVG oscillates in the second mode causing a significant increase in the velocity gradients generating unsteady coherent flow structures. The highest performance was obtained at the maximum Reynolds number for which the global Nusselt number is improved by 35.3 and 41.4 per cent with respect to empty channel and rigid configuration, respectively. Moreover, the thermal enhancement factor corresponding to FVG is 72 per cent higher than that of RVG. Practical implications The results obtained here can help in the design of novel multifunctional heat exchangers/reactors by using flexible tabs and inserts instead of rigid ones. Originality/value The originality of this paper is the use of second mode oscillations of FVG to enhance heat transfer in laminar flow regime.


2010 ◽  
Vol 132 (7) ◽  
Author(s):  
Henrique Stel ◽  
Rigoberto E. M. Morales ◽  
Admilson T. Franco ◽  
Silvio L. M. Junqueira ◽  
Raul H. Erthal ◽  
...  

This article describes a numerical and experimental investigation of turbulent flow in pipes with periodic “d-type” corrugations. Four geometric configurations of d-type corrugated surfaces with different groove heights and lengths are evaluated, and calculations for Reynolds numbers ranging from 5000 to 100,000 are performed. The numerical analysis is carried out using computational fluid dynamics, and two turbulence models are considered: the two-equation, low-Reynolds-number Chen–Kim k-ε turbulence model, for which several flow properties such as friction factor, Reynolds stress, and turbulence kinetic energy are computed, and the algebraic LVEL model, used only to compute the friction factors and a velocity magnitude profile for comparison. An experimental loop is designed to perform pressure-drop measurements of turbulent water flow in corrugated pipes for the different geometric configurations. Pressure-drop values are correlated with the friction factor to validate the numerical results. These show that, in general, the magnitudes of all the flow quantities analyzed increase near the corrugated wall and that this increase tends to be more significant for higher Reynolds numbers as well as for larger grooves. According to previous studies, these results may be related to enhanced momentum transfer between the groove and core flow as the Reynolds number and groove length increase. Numerical friction factors for both the Chen–Kim k-ε and LVEL turbulence models show good agreement with the experimental measurements.


Author(s):  
Francine Battaglia ◽  
George Papadopoulos

The effect of three-dimensionality on low Reynolds number flows past a symmetric sudden expansion in a channel was investigated. The geometric expansion ratio of in the current study was 2:1 and the aspect ratio was 6:1. Both experimental velocity measurements and two- and three-dimensional simulations for the flow along the centerplane of the rectangular duct are presented for Reynolds numbers in the range of 150 to 600. Comparison of the two-dimensional simulations with the experiments revealed that the simulations fail to capture completely the total expansion effect on the flow, which couples both geometric and hydrodynamic effects. To properly do so requires the definition of an effective expansion ratio, which is the ratio of the downstream and upstream hydraulic diameters and is therefore a function of both the expansion and aspect ratios. When the two-dimensional geometry was consistent with the effective expansion ratio, the new results agreed well with the three-dimensional simulations and the experiments. Furthermore, in the range of Reynolds numbers investigated, the laminar flow through the expansion underwent a symmetry-breaking bifurcation. The critical Reynolds number evaluated from the experiments and the simulations was compared to other values reported in the literature. Overall, side-wall proximity was found to enhance flow stability, helping to sustain laminar flow symmetry to higher Reynolds numbers in comparison to nominally two-dimensional double-expansion geometries. Lastly, and most importantly, when the logarithm of the critical Reynolds number from all these studies was plotted against the reciprocal of the effective expansion ratio, a linear trend emerged that uniquely captured the bifurcation dynamics of all symmetric double-sided planar expansions.


Author(s):  
Sam Ghazi-Hesami ◽  
Dylan Wise ◽  
Keith Taylor ◽  
Peter Ireland ◽  
Étienne Robert

Abstract Turbulators are a promising avenue to enhance heat transfer in a wide variety of applications. An experimental and numerical investigation of heat transfer and pressure drop of a broken V (chevron) turbulator is presented at Reynolds numbers ranging from approximately 300,000 to 900,000 in a rectangular channel with an aspect ratio (width/height) of 1.29. The rib height is 3% of the channel hydraulic diameter while the rib spacing to rib height ratio is fixed at 10. Heat transfer measurements are performed on the flat surface between ribs using transient liquid crystal thermography. The experimental results reveal a significant increase of the heat transfer and friction factor of the ribbed surface compared to a smooth channel. Both parameters increase with Reynolds number, with a heat transfer enhancement ratio of up to 2.15 (relative to a smooth channel) and a friction factor ratio of up to 6.32 over the investigated Reynolds number range. Complementary CFD RANS (Reynolds-Averaged Navier-Stokes) simulations are performed with the κ-ω SST turbulence model in ANSYS Fluent® 17.1, and the numerical estimates are compared against the experimental data. The results reveal that the discrepancy between the experimentally measured area averaged Nusselt number and the numerical estimates increases from approximately 3% to 13% with increasing Reynolds number from 339,000 to 917,000. The numerical estimates indicate turbulators enhance heat transfer by interrupting the boundary layer as well as increasing near surface turbulent kinetic energy and mixing.


2000 ◽  
Author(s):  
Stephen E. Turner ◽  
Hongwei Sun ◽  
Mohammad Faghri ◽  
Otto J. Gregory

Abstract This paper presents an experimental investigation on nitrogen and helium flow through microchannels etched in silicon with hydraulic diameters between 10 and 40 microns, and Reynolds numbers ranging from 0.3 to 600. The objectives of this research are (1) to fabricate microchannels with uniform surface roughness and local pressure measurement; (2) to determine the friction factor within the locally fully developed region of the microchannel; and (3) to evaluate the effect of surface roughness on momentum transfer by comparison with smooth microchannels. The friction factor results are presented as the product of friction factor and Reynolds number plotted against Reynolds number. The following conclusions have been reached in the present investigation: (1) microchannels with uniform corrugated surfaces can be fabricated using standard photolithographic processes; and (2) surface features with low aspect ratios of height to width have little effect on the friction factor for laminar flow in microchannels.


1968 ◽  
Vol 72 (688) ◽  
pp. 345-346 ◽  
Author(s):  
Alan Quarmby

Summary Experimental results are presented of the measurement of the ratio of the wall shear stresses at the inner and outer surfaces of concentric annuli. Five radius ratios were investigated with Reynolds numbers in the range 2000-89 000 with air. The Reynolds number is defined as where ū is the bulk velocity. It is concluded that the ratio of the shear stresses is very different from the corresponding laminar flow value and is a function of both radius ratio and Reynolds number.


Sign in / Sign up

Export Citation Format

Share Document