The Effect of Strain Rate Upon the Bending Behavior of Materials

1977 ◽  
Vol 99 (1) ◽  
pp. 47-51 ◽  
Author(s):  
R. G. Davies ◽  
C. L. Magee

The maximum loads sustainable in both four-point bending and prebent hinge collapse tests of several materials have been determined at crosshead rates from 4.2 × 10−3 mm/s to 4.2 m/s (10−2–104 in./min). All the materials exhibit a logarithmic dependence of flow stress on crosshead rate; this dependence is consistent with that previously reported for tensile deformation. Although there are some minor differences in the dynamic stress factors obtained by the bending and tensile methods, all the methods rank the materials in the same order. Thus, for materials evaluation the most convenient test method, which is usually the tensile test, can be chosen. For more complex loading geometries than considered here, scale model testing would yield the most reliable results.

Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 252
Author(s):  
Rongchuang Chen ◽  
Shiyang Zhang ◽  
Xianlong Liu ◽  
Fei Feng

To investigate the effect of hot working parameters on the flow behavior of 300M steel under tension, hot uniaxial tensile tests were implemented under different temperatures (950 °C, 1000 °C, 1050 °C, 1100 °C, 1150 °C) and strain rates (0.01 s−1, 0.1 s−1, 1 s−1, 10 s−1). Compared with uniaxial compression, the tensile flow stress was 29.1% higher because dynamic recrystallization softening was less sufficient in the tensile stress state. The ultimate elongation of 300M steel increased with the decrease of temperature and the increase of strain rate. To eliminate the influence of sample necking on stress-strain relationship, both the stress and the strain were calibrated using the cross-sectional area of the neck zone. A constitutive model for tensile deformation was established based on the modified Arrhenius model, in which the model parameters (n, α, Q, ln(A)) were described as a function of strain. The average deviation was 6.81 MPa (6.23%), showing good accuracy of the constitutive model.


2005 ◽  
Vol 40 (6) ◽  
pp. 571-586 ◽  
Author(s):  
Y Liu ◽  
J Lin ◽  
T. A Dean ◽  
D. C. J Farrugia

During axisymmetric hot tensile testing, necking normally takes place due to the thermal gradient and the accumulation of microdamage. This paper introduces an integrated technique to predict the damage and necking evolution behaviour. Firstly, a set of multiaxial mechanism-based unified viscoplastic-damage constitutive equations is presented. This equation set, which models the evolution of grain boundary (intragranular) and plasticity-induced (intergranular) damage, is determined for a free-cutting steel tested over a range of temperatures and strain rates on a Gleeble thermomechanical simulator. This model has been implemented using the CREEP subroutine of the commercial finite element (FE) solver ABAQUS. Numerical procedures to simulate axisymmetric hot tensile deformation are developed with consideration of the thermal gradient along the axis of the tensile testpiece. FE simulations are carried out to reproduce the necking phenomenon and the evolution of plasticity-induced and grain boundary damage. The simulated results have been validated with experimental tensile test results. The effects of necking and its associated stress state on flow stress and ductility are investigated. The flow stress and ductility data obtained from a Gleeble material simulator under various hot deformation conditions have also been numerically studied.


Author(s):  
S. Xu ◽  
R. Bouchard ◽  
W. R. Tyson

This paper reports results of tests on flow and ductile fracture of a very high toughness steel with Charpy V-notch absorbed energy (CVN energy) at room temperature of 471 J. The microstructure of the steel is bainite/ferrite and its strength is equivalent to X80 grade. The flow stress was determined using tensile tests at temperatures between 150°C and −147°C and strain rates of 0.00075, 0.02 and 1 s−1, and was fitted to a proposed constitutive equation. Charpy tests were carried out at an initial impact velocity of 5.1 ms−1 using drop-weight machines (maximum capacity of 842 J and 4029 J). The samples were not broken during the test, i.e. they passed through the anvils after significant bending deformation with only limited crack growth. Most of the absorbed energy was due to deformation. There was little effect of excess energy on absorbed energy up to 80% of machine capacity (i.e. the validity limit of ASTM E 23). As an alternative to the CVN energy, the crack tip opening angle (CTOA) measured using the drop-weight tear test (DWTT) has been proposed as a material parameter to characterize crack propagation resistance. Preliminary work on evaluating CTOA using the two-specimen CTOA test method is presented. The initiation energy is eliminated by using statically precracked test specimens. Account is taken of the geometry change of the specimens (e.g. thickening under the hammer) on the rotation factor and of the effect of strain rate on flow stress.


2019 ◽  
Vol 1 (3) ◽  
pp. 219-224
Author(s):  
Andikanoza Pradiptiya ◽  
A’isyah Salimah

AbstractSome buildings impose limits on the foundation displacement that occur with relatively small values so as not to cause structural damage. The test method used was to make a model test box as a testing medium by simulating the actual model into the form of a scale model. The study was conducted using a single pile foundation with reduced scale, made of concrete with a diameter of 0.02 m, 0.03 m, 0.04 m and the length of each pile was 0.4 m. The pile model was mounted by pressing into the clay that had been compacted in the test box and then given a tensile load which refers to ASTM D3689-07 procedure E (Constant Rate of Uplift Test). Mobilization of pile friction resistance at critical displacement determined the frictional resistance of the ultimate pile units. The test results showed that the greater the diameter of the pile, the frictional resistance of the ultimate pile units would increase. The increase in frictional resistance of the ultimate pile units showed an average value of around 17.1%.Keywords : Pile foundation, Pile diameter, Friction resistance.AbstrakMeningkatnya pembangunan hunian mengakibatkan naiknya permintaan akan batako, hal ini tentunya Beberapa konstruksi bangunan memberikan batasan kepada perpindahan tiang yang terjadi dengan nilai yang relatif kecil supaya tidak menyebabkan kerusakan struktur. Metode uji yang dipakai adalah membuat box uji model sebagai media pengujian, dengan mensimulasikan model yang sebenarnya ke dalam bentuk model skala. Penelitian dilakukan menggunakan model pondasi tiang tunggal penampang lingkaran lingkaran skala tereduksi yang terbuat dari beton dengan diameter 0,02 m, 0,03 m, 0,04 m dan panjang  masing-masing tiang adalah 0,4 m. Model tiang dipasang dengan cara ditekan pada tanah lempung yang sudah dipadatkan dalam box uji kemudian diberikan beban tarik yang mengacu pada ASTM D3689-07 prosedur E (Constant Rate of Uplift Test). Mobilisasi tahanan gesek tiang pada perpindahan tiang kritis menetukan tahanan gesek satuan ultimit. Hasil uji memperlihatkan bahwa semakin besar diameter tiang, tahanan gesek satuan ultimit tiang akan bertambah. Peningkatan tahanan gesek satuan ultimit tiang menunjukkan rata-rata sekitar 17,1 %.Kata kunci : Pondasi Tiang, Diameter Tiang, Tahanan Gesek Tiang.


2019 ◽  
Vol 15 (4) ◽  
pp. 548-554
Author(s):  
Izzawati Basirom ◽  
Mohd Afendi Rojan ◽  
Mohd Shukry Abdul Majid ◽  
Nor Alia Md Zain ◽  
Mohd Yazid Bajuri

Implant screws failure commonly occurs due to the load that constantly generated by the patient’s body to the fracture area. Bending load is often encountered in femur bone due to lateral impact which affected the bone and also the implants installed. Consequently, the load will lead to the failure of implants that can cause loosening or tightening of implants. Henceforth, in this manner, it is significant to study the bending behavior of bone implant in femur bone. The aim of this study was to analyze the stress shielding of bone implant on the internal fixator. 3D technique is able to show the overall deformation and stress distribution. The lower the biomechanical compatibility, the lower the STP value obtained. In addition, the variation of elastic modulus (E) of the screws materials, 200GPa (Stainless Steel) and 113.8GPa (Titanium) resulted in the increase of the total stress transferred (STP) between screw and bone interface. In this work, strain energy density (SED) was determined as a good indicator of stress shielding.


1975 ◽  
Vol 97 (2) ◽  
pp. 151-155 ◽  
Author(s):  
R. G. Davies ◽  
C. L. Magee

The tensile strength of seventeen engineering materials including steels, Al alloys, and fiber-reinforced plastics, has been determined at strain-rates from 10−3 to 103 sec−1. Variable effects on the stress-strain behavior were found in the different materials with the Al alloys showing minimal strain-rate sensitivity and the plastics highest. All results exhibit a logarithmic dependence of flow stress on strain-rate and thus the dynamic factors (ratio of dynamic to low rate or quasi-static strengths) are as dependent upon changes in quasi-static testing speed (∼1 in./min (0.42 mm/s) as they are to changes at high speed (50,000 in./min or 50 mph (22.35 m/s). No significant influence of strain-rate on elongation or reduction in area has been found for any of the materials. Steels, which comprise the majority of the presently investigated materials, exhibit a higher rate sensitivity for yielding than for higher strain deformation. It is shown that the flow stress results for these steels leads to an internally consistent scheme when (1) strength level and (2) strengthening mechanisms are properly accounted for.


2011 ◽  
Vol 66-68 ◽  
pp. 70-75 ◽  
Author(s):  
Gao Shan Ma ◽  
Song Yang Zhang ◽  
Han Ying Wang ◽  
Min Wan

Uniaxial tensile deformation behavior of 5A90 aluminium-lithium alloy sheet is investigated in the hot forming with the temperature range of 200-450°C and strain rate range of 0.3×10-3-0.2×10-1s-1. It is found that the flow stress of 5A90 Al-Li alloy in uniaxial tension increase with increasing strain rate and decrease with increasing temperature, however, the tendency of total elongation is just the reverse, and the optimum forming temperature is 400°C. The strain rate sensitivity index (m-value) remarkably increases with increasing temperature for a given strain rate. It is shown that 5A90 Al-Li alloy sheet displays the sensitivity to the strain rate at elevated temperatures. For a given strain rate, the strain hardening index (n-value) decreases with increasing temperature, whereas the n-value increases above 350°C. The constitutive equation of stress, strain and strain rate for 5A90 Al-Li alloy at any temperature is obtained by fitting the experimental data, which gave a good flow stress model for the FEM simulation of hot forming.


2014 ◽  
Vol 472 ◽  
pp. 649-653
Author(s):  
Hui Cun Shen ◽  
Kui Tian ◽  
Yan Hua Hu

Resin concrete is a new material which can be made into machine bed instead of the traditional pieces of gray cast iron as the machine base, it can improve the dynamic stiffness of machine tools and the quality of machined parts, and extend the campaign life, reduce noise and improve efficiency. However, due to the long-term effect of load of the resin concrete, the elastic deformation occurs in its component, and the strain will increase over time. Thus it can affect the resin concretes service life, and the calculation of creep has become an urgent task in structure design and use, which should be taken seriously. In this paper, the bending creep properties of resin concrete beam were studied and analyzed by using four-point bending test method. The creep curve under different load levels were obtained, and the viscoelastic properties were analyzed.


Author(s):  
Alex Davila-Frias ◽  
Val Marinov ◽  
Om Prakash Yadav ◽  
Yuriy Atanasov

Abstract Accelerated life testing (ALT) has been a common choice to study the effects of environmental stresses on flexible hybrid electronics (FHE), a promising technology to produce flexible electronic devices. Nevertheless, accelerated degradation testing (ADT) has proven to be a more effective approach, which does not require failure occurrences, allowing shorter testing times. Since FHE devices are expected to be highly reliable, ADT provides useful information in the form of degradation data for further analysis without actual failure data. In this paper, we present the design and experimental setup of ADT for FHE considering two stress factors simultaneously. We use daisy-chain resistance as a measurable degradation characteristic to periodically monitor the degradation of FHE products under accelerated stress conditions. Two stress factors, temperature and humidity, are considered and ADT was carried out considering four combinations of temperature and humidity simultaneously. Failure analysis was performed on failed units to investigate the failure process and location of the failure. The ADT data was used to fit in the appropriate mathematical degradation model representing the failure process. The data analysis showed faster degradation paths for higher stress combinations. Finally, we present insights and further research opportunities to expand the work.


Sign in / Sign up

Export Citation Format

Share Document