An Extension of the Large-Cell Radiation Model for the Case of Semitransparent Nonisothermal Particles

2009 ◽  
Vol 132 (2) ◽  
Author(s):  
Leonid A. Dombrovsky

The recently developed model for thermal radiation in multiphase flows typical of melt-coolant interactions is generalized to account for transient temperature profile in large semitransparent particles of solidifying melt. A modification of the large-cell radiation model (LCRM) is based on the approximate solution for coupled radiation and conduction in optically thick spherical particles of a refractive material. The simplicity of the suggested approximation enables one to implement the modified model in a multiphase computational fluid dynamics code. The LCRM extension makes possible the use of this approach not only for the core melt in nuclear fuel-coolant interactions but also for other melt substances, which are widely used in the laboratory experiments. The numerical data demonstrate an effect of absorption coefficient of the particle substance on the rate of particle cooling and solidification.

Author(s):  
Leonid A. Dombrovsky

The recently developed model for thermal radiation in multiphase flows typical of melt-coolant interactions is generalized to account for transient temperature profile in large semi-transparent particles of solidifying melt. A modification of the Large-Cell Radiation Model (LCRM) is based on approximate solution for coupled radiation and conduction in optically thick spherical particles of a refractive material. The simplicity of the suggested approximation enables one to implement the modified model in a multiphase CFD code. The LCRM extension makes possible the use of this approach not only for the core melt in nuclear fuel-coolant interactions (FCI’s) but also for other melt substances which are widely used in the laboratory experiments. The numerical data demonstrate an effect of absorption coefficient of the particle substance on the rate of particle cooling and solidification.


Author(s):  
Roy Livermore

Despite the dumbing-down of education in recent years, it would be unusual to find a ten-year-old who could not name the major continents on a map of the world. Yet how many adults have the faintest idea of the structures that exist within the Earth? Understandably, knowledge is limited by the fact that the Earth’s interior is less accessible than the surface of Pluto, mapped in 2016 by the NASA New Horizons spacecraft. Indeed, Pluto, 7.5 billion kilometres from Earth, was discovered six years earlier than the similar-sized inner core of our planet. Fortunately, modern seismic techniques enable us to image the mantle right down to the core, while laboratory experiments simulating the pressures and temperatures at great depth, combined with computer modelling of mantle convection, help identify its mineral and chemical composition. The results are providing the most rapid advances in our understanding of how this planet works since the great revolution of the 1960s.


2021 ◽  
Vol 11 (5) ◽  
pp. 2113-2125
Author(s):  
Chenzhi Huang ◽  
Xingde Zhang ◽  
Shuang Liu ◽  
Nianyin Li ◽  
Jia Kang ◽  
...  

AbstractThe development and stimulation of oil and gas fields are inseparable from the experimental analysis of reservoir rocks. Large number of experiments, poor reservoir properties and thin reservoir thickness will lead to insufficient number of cores, which restricts the experimental evaluation effect of cores. Digital rock physics (DRP) can solve these problems well. This paper presents a rapid, simple, and practical method to establish the pore structure and lithology of DRP based on laboratory experiments. First, a core is scanned by computed tomography (CT) scanning technology, and filtering back-projection reconstruction method is used to test the core visualization. Subsequently, three-dimensional median filtering technology is used to eliminate noise signals after scanning, and the maximum interclass variance method is used to segment the rock skeleton and pore. Based on X-ray diffraction technology, the distribution of minerals in the rock core is studied by combining the processed CT scan data. The core pore size distribution is analyzed by the mercury intrusion method, and the core pore size distribution with spatial correlation is constructed by the kriging interpolation method. Based on the analysis of the core particle-size distribution by the screening method, the shape of the rock particle is assumed to be a more practical irregular polyhedron; considering this shape and the mineral distribution, the DRP pore structure and lithology are finally established. The DRP porosity calculated by MATLAB software is 32.4%, and the core porosity measured in a nuclear magnetic resonance experiment is 29.9%; thus, the accuracy of the model is validated. Further, the method of simulating the process of physical and chemical changes by using the digital core is proposed for further study.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Hassam Nasarullah Chaudhry ◽  
John Kaiser Calautit ◽  
Ben Richard Hughes

The effect of wind distribution on the architectural domain of the Bahrain Trade Centre was numerically analysed using computational fluid dynamics (CFD). Using the numerical data, the power generation potential of the building-integrated wind turbines was determined in response to the prevailing wind direction. The three-dimensional Reynolds-averaged Navier-Stokes (RANS) equations along with the momentum and continuity equations were solved for obtaining the velocity and pressure field. Simulating a reference wind speed of 6 m/s, the findings from the study quantified an estimate power generation of 6.4 kW indicating a capacity factor of 2.9% for the benchmark model. At the windward side of the building, it was observed that the layers of turbulence intensified in inverse proportion to the height of the building with an average value of 0.45 J/kg. The air velocity was found to gradually increase in direct proportion to the elevation with the turbine located at higher altitude receiving maximum exposure to incoming wind. This work highlighted the potential of using advanced computational fluid dynamics in order to factor wind into the design of any architectural environment.


2021 ◽  
Vol 54 (1) ◽  
Author(s):  
Luca Brandt ◽  
Filippo Coletti

This review is motivated by the fast progress in our understanding of the physics of particle-laden turbulence in the last decade, partly due to the tremendous advances of measurement and simulation capabilities. The focus is on spherical particles in homogeneous and canonical wall-bounded flows. The analysis of recent data indicates that conclusions drawn in zero gravity should not be extrapolated outside of this condition, and that the particle response time alone cannot completely define the dynamics of finite-size particles. Several breakthroughs have been reported, mostly separately, on the dynamics and turbulence modifications of small inertial particles in dilute conditions and of large weakly buoyant spheres. Measurements at higher concentrations, simulations fully resolving smaller particles, and theoretical tools accounting for both phases are needed to bridge this gap and allow for the exploration of the fluid dynamics of suspensions, from laminar rheology and granular media to particulate turbulence. Expected final online publication date for the Annual Review of Fluid Mechanics, Volume 54 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


1997 ◽  
Vol 45 (1) ◽  
pp. 81-96 ◽  
Author(s):  
A. Mistriotis ◽  
T. De Jong ◽  
M.J.M. Wagemans ◽  
G.P.A. Bot

The basic concepts of CFD are presented in relation to applications in modelling the ventilation process and the resulting indoor climate of agricultural buildings. The validity and the advantages of this numerical technique are presented using 3 examples. Firstly the pressure coefficients along the roof of a 7-span Venlo-type greenhouse were calculated and compared with the corresponding experimental values. Next, the ventilation process in a single-span greenhouse was investigated and the results were compared to laboratory experiments. Finally, the use of CFD as a design tool for more efficient ventilation systems was demonstrated for the case of a broiler house.


2021 ◽  
Author(s):  
Christian Windt ◽  
Nils Goseberg ◽  
Tobias Martin ◽  
Hans Bihs

Abstract Exploiting the offshore wind resources using floating offshore wind systems at sites with deep water depths requires advanced knowledge of the system behaviour, including the hydro-, areo-, and mooring dynamics. To that end, high-fidelity numerical modelling tools, based on Computational Fluid Dynamics, can support the research and development of floating offshore wind systems by providing high-resolution data sets. This paper presents the first steps towards the numerical modelling of tension leg platforms for floating offshore wind applications using the open-source Computational Fluid Dynamics toolbox REEF3D. The numerical model of a taut-moored structure is validated against experimental reference data. Results from wave-only test cases highlight the simplicity and effectiveness of the wave generation method, implemented in REEF3D. For the considered wave-structure interaction cases, deviations between the experimental and numerical data can be observed for the surge and pitch displacements, while the heave displacement and the mooring forces are capture with sufficient accuracy. Overall, the numerical results indicate high potential of REEF3D to be used for the modelling of floating offshore wind systems.


2019 ◽  
Vol 7 ◽  
pp. 124-141
Author(s):  
Kimberley Kroll

In 2014, Ray Yeo published a modified account of the Spirit’s indwelling in “Towards a Model of the Indwelling: A Conversation with Jonathan Edwards and William Alston.” Yeo utilizes a conglomerate of Two-Minds Christology and Spirit Christology to provide a metaphysical framework for his model which he believes offers a viable alternative to more traditional merger accounts like those of Edwards and Alston. After providing an overview of Yeo’s objections to the merger accounts of Alston and Edwards, I will summarize Yeo’s modified model. I will argue Yeo’s emphasis on the humanity of Christ in lieu of a literal, internal, and direct union of the Holy Spirit and the human person cannot alleviate the core metaphysical concerns which surface in all accounts of union between the divine and human.  Yeo’s misunderstanding of Two-Minds Christology leads him to deny the full humanity of Christ; a humanity upon which his entire account of the indwelling relies. Yeo’s modified model will be shown unsuccessful as an account of the indwelling of the Holy Spirit even if one accepts both his conception of Two-Minds Christology and his conditions for indwelling.


2020 ◽  
Vol 222 (1) ◽  
pp. 338-351 ◽  
Author(s):  
F Gerick ◽  
D Jault ◽  
J Noir ◽  
J Vidal

SUMMARY We investigate the pressure torque between the fluid core and the solid mantle arising from magnetohydrodynamic modes in a rapidly rotating planetary core. A 2-D reduced model of the core fluid dynamics is developed to account for the non-spherical core–mantle boundary. The simplification of such a quasi-geostrophic model rests on the assumption of invariance of the equatorial components of the fluid velocity along the rotation axis. We use this model to investigate and quantify the axial torques of linear modes, focusing on the torsional Alfvén modes (TM) in an ellipsoid. We verify that the periods of these modes do not depend on the rotation frequency. Furthermore, they possess angular momentum resulting in a net pressure torque acting on the mantle. This torque scales linearly with the equatorial ellipticity. We estimate that for the TM calculated here topographic coupling to the mantle is too weak to account for the variations in the Earth’s length-of-day.


Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4616
Author(s):  
Chen Wei ◽  
Xianqiang Li ◽  
Ming Yang ◽  
Zhiyuan Ma ◽  
Hui Hou

The remanence (residual flux) in the core of power transformers needs to be determined in advance to eliminate the inrush current during the process of re-energization. In this paper, a novel method is proposed to determine the residual flux based on the relationship between residual flux and the measured magnetizing inductance. The paper shows physical, numerical, and analytical explanations on the phenomenon that the magnetizing inductance decreases with the increase of residual flux under low excitation. Numerical simulations are performed by EMTP (Electro-Magnetic Transient Program) on a 1 kVA power transformer under different amounts of residual flux. The inductance–remanence curves are nearly the same when testing current changes. Laboratory experiments conducted on the same transformer are in line with the numerical simulations. Furthermore, numerical simulation results on a 240 MVA are reported to demonstrate the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document