A Study for the Influence of Work Hardening on Bending Stiffness of Truss Core Panel

2010 ◽  
Vol 77 (3) ◽  
Author(s):  
Sunao Tokura ◽  
Ichiro Hagiwara

Honeycomb panel is widely used as flooring or wall material in various structures, e.g., buildings, aircraft, flooring members of railway car, and so on, due to high stiffness and lightness at present. Honeycomb panel, however, has a disadvantage that the adhesive used to glue honeycomb core and top plate may burn by fire. On the other hand, truss core panel has equivalent stiffness as honeycomb panel and is expected to be an alternative to honeycomb panel as it is safer for fire. To replace honeycomb panel with truss core panel, it is necessary to investigate the stiffness of truss core panel for bending, shear, compression, and so on. The bending case with a three-point bending model of truss core panel is chosen here. Four cases of analysis with/without work hardening effect and thickness change using two types of shell formulation are performed. These cases are compared with an equivalent honeycomb model. The study showed the effect of work hardening is very important to assess bending stiffness of truss core panel. It is also observed that the use of suitable shell formulation is necessary to obtain reliable result. In addition, the truss core panel shows bending stiffness comparable with conventional honeycomb panel.

2010 ◽  
Vol 168-170 ◽  
pp. 1046-1050 ◽  
Author(s):  
Ming Jun Peng ◽  
Yong Sun ◽  
Ji Yao ◽  
Yong Hua Duan ◽  
Sai Bei Wang

The mechanics behaviors on three-point bending of brazed aluminum honeycomb panel by FEM are investigated in this paper. The results show that honeycomb panel have three typical failure modes under bending load:failure of honeycomb core collapse, the whole panel bending failure and face sheet shear failure. Honeycomb lateral bending failure load is greater than the longitudinal bending failure load. When the ratio of honeycomb core thickness and panel thickness is between 10% to 15%, the strongest cellular panel bending occurs.


Author(s):  
Aya Abe ◽  
Kosuke Terada ◽  
Haruki Yashiro ◽  
Ichiro Hagiwara

Abstract The truss core surpasses the honeycomb core depending on the tasks. The height of core is limited by press forming and so on. Therefore, we developed a method by folding mountain / valley lines like origami. The origami forming method has the feature that it can be done from paper to metal by the same method. By examining three-point bending tests, drop tests, and analyzing them, we show that the structure that space-filled with cores obtained by the origami forming method called ATCP will be a box for both excellent cushioning material and transporting. Moreover, we also show that the core structure obtained by this has excellent sound insulation performance.


2013 ◽  
Vol 486 ◽  
pp. 283-288
Author(s):  
Ladislav Fojtl ◽  
Soňa Rusnáková ◽  
Milan Žaludek

This research paper deals with an investigation of the influence of honeycomb core compression on the mechanical properties of sandwich structures. These structures consist of prepreg facing layers and two different material types of honeycomb and are produced by modified compression molding called Crush-Core technology. Produced structures are mechanically tested in three-point bending test and subjected to low-velocity impact and Charpy impact test.


2011 ◽  
Vol 121-126 ◽  
pp. 2471-2475
Author(s):  
Zhi Zhen Xia ◽  
Xi Lu Zhao ◽  
Ichiro Hagiwara

New structure patterns of metal panel are used in modern life such as Truss Core Panel (TCP). It is used as flooring or wall material in train, car, aircraft, and buildings etc. at present. Beyond the traditional material, the new patterns have lighter weight and harder stiffness. However, in general, there are difficulties in forming truss core panel, which should be getting forming limit and developed. In this paper, firstly forming limitation is discussed for tetrahedral truss core. Secondly improved hotforming simulation was set for improvement.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2325 ◽  
Author(s):  
Jingxin Hao ◽  
Xinfeng Wu ◽  
Gloria Oporto ◽  
Jingxin Wang ◽  
Gregory Dahle ◽  
...  

A new type of Taiji honeycomb structure bonded outside with wood-based laminates was characterized from a mechanical standpoint. Both theoretical and experimental methods were employed to analyze comprehensively the deformation behavior and failure mechanism under a three-point bending test. The analytical analysis reveals that a Taiji honeycomb has 3.5 times higher strength in compression and 3.44 times higher strength in shear compared with a traditional hexagonal honeycomb. Considering the strength-weight issue, the novel structure also displays an increase in compression strength of 1.75 times and shear strength of 1.72 times. Under a three-point bending test, indentation and core shear failure played the dominant role for the total failure of a wooden sandwich with Taiji honeycomb core. Typical face yield was not observed due to limited thickness-span ratio of specimens. Large spans weaken the loading level due to the contribution of global bending stress in the compressive skin to indentation failure. A set of analytical equations between mechanical properties and key structure parameters were developed to accurately predict the threshold stresses corresponding to the onset of those deformation events, which offer critical new knowledge for the rational structure design of wooden sandwich composites.


Author(s):  
Hoan Thai Tat Nguyen ◽  
Phuong Thao Thai ◽  
Bo Yu ◽  
Ichiro Hagiwara

Although honeycomb panel is widely used in various stages, its adhesive for gluing honeycomb core and plate may burn by fire, leading to the requirement of another lightweight and high stiffness panel. Recently, an Origami structure called Truss Core Panel (TCP) is known as a lightweight structure that has equivalent bending stiffness as honeycomb panel, and safer in fire. However, some difficulties are found in forming TCP in general. In this study, a new forming process of TCP based on origami-forming is developed. In particular, the TCP is partitioned into several parts that are flat unfoldable into 2D crease patterns. After that, blanks of material are cut as the shapes of those crease pattern, and be formed by a robot system to get the desired 3D shape. Firstly, partition method by dividing TCP into pyramid cores and sheet plate is presented, suggesting an ability to manufacture a wider range of structure than before. Tools arrangement of robot device and a countermeasure for springback are considered. Next, by applying Origami unfolding technique, an improvement of partition method is proposed: dividing TCP into cores rows, and then searching for a Origami crease pattern in order to fold that cores row. The cutting method of every core is modified for reducing the number of facets, making the problem simpler. Finally, an Origami crease pattern based on this new cutting method is presented, producing cores row with any number of cores.


Author(s):  
M.R. Ashok ◽  
M. Manojkumar ◽  
P.V. Inbanaathan ◽  
R. Shanmuga Prakash

This paper details the fabrication and flexural testing of sandwich structure with Aluminium honeycomb core with Aluminium face skins. The material for the face skin is aluminium 1100 and for the core is Aluminium AA8011. The cell size obtained by fabrication is 7mm. The specimen is prepared and tested as per the ASTM standard C393/C393M-11 on a three-point bending test to obtain the ultimate core shear strength and the face skin strength. Finite element analysis is also carried out to validate the experimental test.


2010 ◽  
Vol 160-162 ◽  
pp. 855-859 ◽  
Author(s):  
Li Qing Meng ◽  
Yan Wu ◽  
Shi Zhe Chen ◽  
Xue Feng Shu

Sandwich construction consists of two thin composite or metal facesheets separated by a core material. Despite extensive researches on the sandwich constructions, their mechanical properties and failure behaviours are still not fully understand. The objective of the paper is to use a experimental and theoretical predicting failure mode for sandwich beam consisting of GFRP facesheets and Nomex honeycomb core. Two kinds of composite sandwich beams are observed in quasi-static three-point bending and indentation test.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Naihui Yu ◽  
Jianzhong Shang ◽  
Yujun Cao ◽  
Dongxi Ma ◽  
Qiming Liu

Al-Li alloy and aluminum honeycomb panel (AHP) are both excellent materials for aeronautical structures. In this paper, a plate-type aeronautical structure (PAS), which is a base mounting structure for 172 kg functional devices, is selected for comparative analysis with different materials. To compare system-level performance under multidisciplinary constraints, mathematical models for optimization are established and then structural optimization is carried out using Altair OptiStruct. For AHP, its honeycomb core is regarded as orthotropic material and its mechanical properties are calculated by Allen’s model in order to establish finite element model (FEM). The heights of facing sheet and honeycomb core are selected as design variables for size optimization. For Al-Li alloy plate, topology optimization is carried out to obtain its most efficient load path; and then a reconstruction process is executed for practical manufacturing consideration; to obtain its final configuration, accurate size optimization is also used for reconstructed model of Al-Li alloy plate. Finally, the optimized mass and performance of two PASs are compared. Results show that AHP is slightly superior to Al-Li alloy.


Sign in / Sign up

Export Citation Format

Share Document