Cryosurgery: Analysis and Experimentation of Cryoprobes in Phase Changing Media

2010 ◽  
Vol 133 (1) ◽  
Author(s):  
Avraham Shitzer

This article presents a retrospective of work performed at the Technion, Israel Institute of Technology, over the last 3-odd decades. Results of analytical and numerical studies are presented briefly as well as in vitro and in vivo experimental data and their comparison to the derived results. Studies include the analysis of both the direct (Stefan) and the inverse-Stefan phase-change heat transfer problems in a tissue-simulating medium (gel) by the application of both surface and insertion cryoprobes. The effects of blood perfusion and metabolic heat generation rates on the advancement of the freezing front are discussed. The simultaneous operation of needle cryoprobes in a number of different configurations and the effects of a thermally significant blood vessel in the vicinity of the cryoprobe are also presented. Typical results demonstrate that metabolic rate in the yet nonfrozen tissue, will have only minor effects on the advancement of the frozen front. Capillary blood perfusion, on the other hand, does affect the course of change of the temperature distribution, hindering, as it is increased, the advancement of the frozen front. The volumes enclosed by the “lethal” isotherm (assumed as −40°C), achieve most of their final size in the first few minutes of operation, thus obviating the need for prolonged applications. Volumes occupied by this lethal isotherm were shown to be rather small. Thus, after 10 min of operation, these volumes will occupy only about 6% (single probe), 6–11% (two probes, varying distances apart), and 6–15% (three probes, different placement configurations), relative to the total frozen volume. For cryosurgery to become the treatment-of-choice, much more work will be required to cover the following issues: (1) A clear cut understanding and definition of the tissue-specific thermal conditions that are required to ensure the complete destruction of a tissue undergoing a controlled cryosurgical process. (2) Comprehensive analyses of the complete freeze/thaw cycle(s) and it effects on the final outcome. (3) Improved technical means to control the temperature variations of the cryoprobe to achieve the desired thermal conditions required for tissue destruction. (4) Improvement in the pretreatment design process to include optimal placement schemes of multiprobes and their separate and specific operation. (5) Understanding the effects of thermally significant blood vessels, and other related thermal perturbations, which are situated adjacent to, or even within, the tissue volume to be treated.

1994 ◽  
Vol 266 (6) ◽  
pp. L593-L611 ◽  
Author(s):  
M. D. Evans ◽  
W. A. Pryor

The proteinase-antiproteinase theory for the pathogenesis of emphysema proposes that the connective tissue destruction associated with emphysema arises from excessive proteinase activity in the lower respiratory tract. For this reason, the relative activities of neutrophil elastase and alpha 1-proteinase inhibitor (alpha 1-PI) are considered important. Most emphysema is observed in smokers; therefore, alpha 1-PI has been studied as a target for smoke-induced damage. Damage to alpha 1-PI in lung fluid could occur by several mechanisms involving species delivered to the lung by cigarette smoke and/or stimulated inflammatory cells. Oxidative damage to alpha 1-PI has received particular attention, since both cigarette smoke and inflammatory cells are rich sources of oxidants. In this article we review almost two decades of research on mechanistic studies of damage to alpha 1-PI by cigarette smoke and phagocytic cells in vitro, studies emphasizing the importance of elastinolytic activity in the pathogenesis of emphysema in vivo and studies of human lung lavage fluid to detect defects in alpha 1-PI at the molecular and functional levels.


Thorax ◽  
2018 ◽  
Vol 73 (6) ◽  
pp. 565-574 ◽  
Author(s):  
Winifred Broekman ◽  
Padmini P S J Khedoe ◽  
Koen Schepers ◽  
Helene Roelofs ◽  
Jan Stolk ◽  
...  

COPD is characterised by tissue destruction and inflammation. Given the lack of curative treatments and the progressive nature of the disease, new treatments for COPD are highly relevant. In vitro cell culture and animal studies have demonstrated that mesenchymal stromal cells (MSCs) have the capacity to modify immune responses and to enhance tissue repair. These properties of MSCs provided a rationale to investigate their potential for treatment of a variety of diseases, including COPD. Preclinical models support the hypothesis that MSCs may have clinical efficacy in COPD. However, although clinical trials have demonstrated the safety of MSC treatment, thus far they have not provided evidence for MSC efficacy in the treatment of COPD. In this review, we discuss the rationale for MSC-based cell therapy in COPD, the main findings from in vitro and in vivo preclinical COPD model studies, clinical trials in patients with COPD and directions for further research.


2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Junyao Yang ◽  
Wen Wang ◽  
Qian Wang ◽  
Lingfang Zeng

Background: Histone deacetylase 7 (HDAC7) belongs to class II HDAC family, playing a pivotal role in the maintenance of endothelium integrity. There are 8 splicing variants in mouse HDAC7 mRNAs. Within the 5’ terminal non-coding area of some variants, there exist some short open reading frames (sORFs). Whether these sORFs can be translated and their potential roles in cellular physiology remain unclear. Method and results: Our previous studies suggested that one mouse HDAC7 produced a 7aa peptide from the non-coding area. In this study, we demonstrated that one sORF encoding a 7 amino acids (aa)-peptide could be translated in response to vascular endothelial cell growth factor (VEGF) in vascular progenitor cells (VPCs). The 7aa-peptide (7A) could be phosphorylated at serine residue via MEKK1. Importantly, the phosphorylated 7aa-peptide (7Ap) could transfer the phosphorylation group to the Thr residue of the 14-3-3γ protein in a cell free in-gel buffer system. The in vitro functional analyses revealed that 7A enhanced VEGF-induced VPC migration and differentiation toward endothelial cell (EC) lineage, in which MEKK1 and 14-3-3γ served as upstream kinase and downstream effector respectively. Knockdown of either MEKK1 or 14-3-3γ attenuated VEGF-induced VPC migration and differentiation. Exogenous 7Ap could rescue VEGF effect in MEKK1 but not in 14-3-3γ knockdown cells. The in vivo studies showed that 7A especially 7Ap induced capillary vessel formation within matrigel plug assays, increased re-endothelialization and suppressed neointima formation in the femoral artery injury model, and promoted the foot blood perfusion recovery in the hindlimb ischemia model. Conclusion: These results indicate that the sORFs within the non-coding area can be translated under some circumstances and that the 7aa-peptide may play an important role in cellular processes like migration and differentiation via acting as a phosphorylation carrier. Significance: As a phosphorylation carrier, 7aa possesses therapeutic potentials in tackling angiogenesis related diseases.


2007 ◽  
Vol 292 (6) ◽  
pp. E1616-E1623 ◽  
Author(s):  
En Yin Lai ◽  
A. Erik G. Persson ◽  
Birgitta Bodin ◽  
Örjan Källskog ◽  
Arne Andersson ◽  
...  

Endothelin-1 (ET-1) is a potent endothelium-derived vasoconstrictor, which also stimulates insulin release. The aim of the present study was to evaluate whether exogenously administered ET-1 affected pancreatic islet blood flow in vivo in rats and the islet arteriolar reactivity in vitro in mice. Furthermore, we aimed to determine the ET-receptor subtype that was involved in such responses. When applying a microsphere technique for measurements of islet blood perfusion in vivo, we found that ET-1 (5 nmol/kg) consistently and markedly decreased total pancreatic and especially islet blood flow, despite having only minor effects on blood pressure. Neither endothelin A (ETA) receptor (BQ-123) nor endothelin-B (ETB) receptor (BQ-788) antagonists, alone or in combination, could prevent this reduction in blood flow. To avoid confounding interactions in vivo, we also examined the arteriolar vascular reactivity in isolated, perfused mouse islets. In the latter preparation, we demonstrated a dose-dependent constriction in response to ET-1. Administration of BQ-123 prevented this, whereas BQ-788 induced a right shift in the response. In conclusion, the pancreatic islet vasculature is highly sensitive to exogenous ET-1, which mediates its effect mainly through ETA receptors.


2002 ◽  
Vol 103 (5) ◽  
pp. 441-449 ◽  
Author(s):  
Sharon VIVERS ◽  
Ian DRANSFIELD ◽  
Simon P. HART

Understanding the cellular and molecular mechanisms that determine whether inflammation resolves or progresses to scarring and tissue destruction should lead to the development of effective therapeutic strategies for inflammatory diseases. Apoptosis of neutrophil granulocytes is an important determinant of the resolution of inflammation, providing a mechanism for down-regulation of function and triggering clearance by macrophages without inducing a pro-inflammatory response. However, if the rate of cell death by apoptosis is such that the macrophage clearance capacity is exceeded, apoptotic cells may progress to secondary necrosis, resulting in the release of harmful cellular contents and in damage to the surrounding tissue. There are many possible ways in which the rate and capacity of the macrophage-mediated clearance of apoptotic cells may be enhanced or suppressed. Ligation of human macrophage surface CD44 by bivalent monoclonal antibodies rapidly and profoundly augments the capacity of macrophages to phagocytose apoptotic neutrophils in vitro. The molecular mechanism behind this effect and its potential significance in vivo is a current focus of research.


Blood ◽  
2010 ◽  
Vol 115 (20) ◽  
pp. 4083-4092 ◽  
Author(s):  
Frédéric Adam ◽  
Alexandre Kauskot ◽  
Paquita Nurden ◽  
Eric Sulpice ◽  
Marc F. Hoylaerts ◽  
...  

Abstract The role of c-Jun NH2-terminal kinase 1 (JNK1) in hemostasis and thrombosis remains unclear. We show here, with JNK1-deficient (JNK1−/−) mice, that JNK1 plays an important role in platelet biology and thrombus formation. In tail-bleeding assays, JNK1−/− mice exhibited longer bleeding times than wild-type mice (396 ± 39 seconds vs 245 ± 32 seconds). We also carried out in vitro whole-blood perfusion assays on a collagen matrix under arterial shear conditions. Thrombus formation was significantly reduced for JNK1−/− platelets (51%). In an in vivo model of thrombosis induced by photochemical injury to cecum vessels, occlusion times were 4.3 times longer in JNK1−/− arterioles than in wild-type arterioles. Moreover, in vitro studies carried out in platelet aggregation conditions demonstrated that, at low doses of agonists, platelet secretion was impaired in JNK1−/− platelets, leading to altered integrin αIIbβ3 activation and reduced platelet aggregation, via a mechanism involving protein kinase C. JNK1 thus appears to be essential for platelet secretion in vitro, consistent with its role in thrombus growth in vivo. Finally, we showed that ERK2 and another isoform of JNK affect platelet aggregation through 2 pathways, one dependent and another independent of JNK1.


mBio ◽  
2021 ◽  
Vol 12 (2) ◽  
Author(s):  
W. Posch ◽  
J. Vosper ◽  
V. Zaderer ◽  
A. Noureen ◽  
S. Constant ◽  
...  

ABSTRACT SARS-CoV-2 infection causing the COVID-19 pandemic calls for immediate interventions to avoid viral transmission, disease progression, and subsequent excessive inflammation and tissue destruction. Primary normal human bronchial epithelial cells are among the first targets of SARS-CoV-2 infection. Here, we show that ColdZyme medical device mouth spray efficiently protected against virus entry, excessive inflammation, and tissue damage. Applying ColdZyme to fully differentiated, polarized human epithelium cultured at an air-liquid interphase (ALI) completely blocked binding of SARS-CoV-2 and increased local complement activation mediated by the virus as well as productive infection of the tissue model. While SARS-CoV-2 infection resulted in exaggerated intracellular complement activation immediately following infection and a drop in transepithelial resistance, these parameters were bypassed by single pretreatment of the tissues with ColdZyme mouth spray. Crucially, our study highlights the importance of testing already evaluated and safe drugs such as ColdZyme mouth spray for maintaining epithelial integrity and hindering SARS-CoV-2 entry within standardized three-dimensional (3D) in vitro models mimicking the in vivo human airway epithelium. IMPORTANCE Although our understanding of COVID-19 continuously progresses, essential questions regarding prophylaxis and treatment remain open. A hallmark of severe SARS-CoV-2 infection is a hitherto-undescribed mechanism leading to excessive inflammation and tissue destruction associated with enhanced pathogenicity and mortality. To tackle the problem at the source, transfer of SARS-CoV-2, subsequent binding, infection, and inflammatory responses have to be avoided. In this study, we used fully differentiated, mucus-producing, and ciliated human airway epithelial cultures to test the efficacy of ColdZyme medical device mouth spray in terms of protection from SARS-CoV-2 infection. Importantly, we found that pretreatment of the in vitro airway cultures using ColdZyme mouth spray resulted in significantly shielding the epithelial integrity, hindering virus binding and infection, and blocking excessive intrinsic complement activation within the airway cultures. Our in vitro data suggest that ColdZyme mouth spray may have an impact in prevention of COVID-19.


2021 ◽  
Vol 23 (1) ◽  
pp. 185
Author(s):  
Hong Zhe Zhang ◽  
Dong-Sik Chae ◽  
Sung-Whan Kim

Previously, we reported the angio-vasculogenic properties of human stromal vascular fraction (SVF) and adipose tissue-derived mesenchymal stem cells (ASCs). In this study, we investigated whether the combination of ASCs and SVF cells exhibited synergistic angiogenic properties. We conducted quantitative (q)RT-PCR, Matrigel plug, tube formation assays, and in vivo therapeutic assays using an ischemic hind limb mouse model. Immunohistochemical analysis was also conducted. qRT-PCR results revealed that FGF-2 was highly upregulated in ASCs compared with SVF, while PDGF-b and VEGF-A were highly upregulated in SVF. Conditioned medium from mixed cultures of ASCs and SVF (A+S) cells showed higher Matrigel tube formation and endothelial cell proliferation in vitro. A+S cell transplantation into ischemic mouse hind limbs strongly prevented limb loss and augmented blood perfusion compared with SVF cell transplantation. Transplanted A+S cells also showed high capillary density, cell proliferation, angiogenic cytokines, and anti-apoptotic potential in vivo compared with transplanted SVF. Our data indicate that A+S cell transplantation results in synergistic angiogenic therapeutic effects. Accordingly, A+S cell injection could be an alternative therapeutic strategy for treating ischemic diseases.


2019 ◽  
Vol 98 (9) ◽  
pp. 1027-1036 ◽  
Author(s):  
W. Wei ◽  
X. Xiao ◽  
J. Li ◽  
H. Ding ◽  
W. Pan ◽  
...  

Early studies on the etiology and pathogenesis of hypertension have shown that it has a considerable association with inflammation and the immune response as well as periodontitis. Clinical studies have also shown that hypertension can promote the periodontal tissue destruction caused by periodontitis. However, the underlying mechanisms remain unclear. This study aimed to explore the possible mechanisms of how hypertension aggravates periodontitis. Treatment with or without the signal transducer and activator of transcription 1 (STAT1) inhibitor fludarabine was performed in an endothelial nitric oxide synthase gene knockout-related ( Nos3-/-) mouse model with the hypertension phenotype of periodontitis induced by bacteria. Micro–computed tomography, immunohistochemistry, Western blot, quantitative reverse transcription polymerase chain reaction, immunofluorescence, and ELISA were performed. We demonstrated that Nos3-/--related hypertension increases bone resorption and periodontal destruction in periodontitis lesion areas, which can be inhibited by the STAT1 inhibitor. Experimental data also showed that Nos3-/- significantly increased macrophage infiltration and proinflammatory cytokine expression in the periodontitis lesion area, which is dependent on the angiotensin II–induced STAT1 pathway. Inhibition of STAT1 in vivo can decrease the expression of proinflammatory cytokines and macrophage infiltration. Furthermore, data in this study showed that Nos3-/--related hypertension further downregulated the STAT3 anti-inflammatory function and its downstream chemokine expression in a STAT1-dependent manner. By applying RAW 264.7 and L929 cell lines and monocytes isolated from Nos3-/- mice, we confirmed that activation of the STAT1 pathway inhibits STAT3 and its downstream pathway and promotes inflammatory cytokine expression in vitro. Collectively, our current study demonstrated that STAT1 plays an indispensable role in the Nos3-/--related hypertension with aggravation of periodontitis, suggesting that STAT1 may be a key target for the treatment of periodontitis with hypertension.


Sign in / Sign up

Export Citation Format

Share Document