scholarly journals Reliability Assessment of Preloaded Solder Joint Under Thermal Cycling

2012 ◽  
Vol 134 (4) ◽  
Author(s):  
Da Yu ◽  
Hohyung Lee ◽  
Seungbae Park

The ever increasing power density in modern semiconductor devices requires heat dissipation solution such as heat sink to remove heat away from the device. A compressive loading is usually applied to reduce the interfacial thermal resistance between package and heat sink. In this paper, both experimental approaches and numerical modeling were employed to study the effect of compressive loading on the interconnect reliability under thermal cycling conditions. A special loading fixture which simulated the heat sink was designed to apply compressive loading to the package. The JEDEC standard thermal cycle tests were performed and the resistance of daisy chained circuits was in situ measured. The time to crack initiation and time to permanent failure were identified separately based on in situ resistance measurement results. Failure analysis has been performed to identify the failure modes of solder joint with and without the presence of compressive loading. A finite element based thermal-fatigue life prediction model for SAC305 solder joint under compressive loading was also developed to understand the thermal-fatigue crack behaviors of solder joint and successfully validated with the experimental results.

Author(s):  
Da Yu ◽  
Tung Nguyen ◽  
Ho H. Lee ◽  
Namseo Goo ◽  
S. B. Park

The ever increasing power density in modern semiconductor devices requires heat dissipation solution such as heat sink to remove the heat away from the device. A compressive loading was applied to reduce the interfacial thermal resistance between package and heat sink. In this study both numerical modeling and experimental approaches were employed to study the effect of compressive loading on the interconnect reliability, especially for high power density package, under thermal cycling loading conditions. The JEDEC standard thermal cycle tests were conducted and the resistance of the daisy chained circuits was in-situ measured to record the failure time. The failure analysis has been performed to indentify the failure modes of solder joint with and without the presence of compressive loading. A finite element based thermal fatigue life prediction model for SAC305 solder joint under compressive loading was also developed and validated with the experimental results.


Author(s):  
Erick Gutierrez ◽  
Kevin Lin ◽  
Douglas DeVoto ◽  
Patrick McCluskey

Abstract Insulated gate bipolar transistor (IGBT) power modules are devices commonly used for high-power applications. Operation and environmental stresses can cause these power modules to progressively degrade over time, potentially leading to catastrophic failure of the device. This degradation process may cause some early performance symptoms related to the state of health of the power module, making it possible to detect reliability degradation of the IGBT module. Testing can be used to accelerate this process, permitting a rapid determination of whether specific declines in device reliability can be characterized. In this study, thermal cycling was conducted on multiple power modules simultaneously in order to assess the effect of thermal cycling on the degradation of the power module. In-situ monitoring of temperature was performed from inside each power module using high temperature thermocouples. Device imaging and characterization were performed along with temperature data analysis, to assess failure modes and mechanisms within the power modules. While the experiment aimed to assess the potential damage effects of thermal cycling on the die attach, results indicated that wire bond degradation was the life-limiting failure mechanism.


1992 ◽  
Vol 114 (4) ◽  
pp. 472-476 ◽  
Author(s):  
J. Sauber ◽  
J. Seyyedi

A power-law type creep equation has been added to finite element models to calculate solder joint response to time, temperature, and stress level. The ability of the models to predict solder joint behavior was verified by running a series of creep tests. The models were then solved to determine the solder joint creep strains which occur during thermal cycling. These creep strains were used to predict the degradation of pull strength resulting from thermal cycling. More than 8,600 solder joints were thermally cycled and then individually pull tested to verify the accuracy of the method.


Author(s):  
Ouk Sub Lee ◽  
No Hoon Myoung ◽  
Dong Hyeok Kim

The use of Ball Grid Array (BGA) interconnects utilizing the BGA solder joint has grown rapidly because of its small volume and diversity of its application. Therefore, the continuous quantification and refinement of BGA solder joint in terms of its reliability are required. The creep and cyclically applied mechanical loads generally cause metal fatigue on the BGA solder joint which inevitably leads to an electrical discontinuity. In the field application, the BGA solder joints are known to experience mechanical loads during temperature changes caused by power up/down events as the result of the Coefficient of Thermal Expansion (CTE) mismatch between the substrate and the Si die. In this paper, extremely small resistance changes in the lead free joints corresponding to the through-cracks generated by the thermal fatigue were measured and the failure was defined in terms of anomalous changes in the joint resistance. Furthermore, the reliability of BGA solder joints under thermal cycling was evaluated by using a criterion that may define and distinguish a failure in the solder joint. Any changes in circuit resistance according to the accumulated damage induced by the thermal cycling in the joint were recorded and evaluated by the First Order Reliability Method (FORM) procedure in order to quantify the reliability of solder joint. The first order Taylor series expansion of the limit state function incorporating with thermal fatigue models is used in order to estimate the failure probability of solder joints under heated condition. Various thermal fatigue models are utilized in this study. Models based on various plastic-strain rates such as Coffin-Manson fatigue model, total strain fatigue model and Solomon fatigue model are utilized in this study. The effects of random variables such as the CTE, the pitch of solder joint, the diameter of solder joint, and the CTE difference solder joints on the failure probability of the solder joint are systematically investigated by using a failure probability model with the FORM.


Author(s):  
Gary L. Solbrekken ◽  
Kazuaki Yazawa ◽  
Avram Bar-Cohen

It is well established that the power dissipation for electronic components is increasing. At the same time, high performance portable equipment with volume, weight, and power limitations are gaining widespread acceptance in the marketplace. The combination of the above conditions requires thermal solutions that are high performance and yet small, light, and power efficient. This paper explores the possibility of using thermoelectric (TE) refrigeration as an integrated solution for portable electronic equipment accounting for heat sink and interface material thermal resistances. The current study shows that TE refrigeration can indeed have a benefit over using just a heat sink. Performance maps illustrating where TE refrigeration offers an advantage over an air-cooled heat sink are created for a parametric range of CPU heat flows, heat sink thermal resistances, and TE material properties. During the course of the study, it was found that setting the TE operating current based on minimizing the CPU temperature (Tj), as opposed to maximizing the amount of heat pumping, significantly reduces Tj. For the baseline case studied, a reduction of 20–30°C was demonstrated over a range of CPU heat dissipation. The parametric studies also illustrate that management of the heat sink thermal resistance appears to be more critical than the CPU/TE interfacial thermal resistance. However, setting the TE current based on a minimum Tj as opposed to maximum heat pumping reduces the system sensitivity to the heat sink thermal resistance.


2015 ◽  
Vol 27 (2) ◽  
pp. 76-83 ◽  
Author(s):  
Jibing Chen ◽  
Yanfang Yin ◽  
Jianping Ye ◽  
Yiping Wu

Purpose – The purpose of this paper is to investigate the thermal fatigue behavior of a single Sn-3.0Ag-0.5Cu (SAC) lead-free and 63Sn-37Pb (SnPb) solder joint treated by rapidly alternating heating and cooling cycles. Design/methodology/approach – With the application of electromagnetic-induced heating, the specimen was heated and cooled, controlled with a system that uses a fuzzy logic algorithm. The microstructure and morphology of the interface between the solder ball and Cu substrate was observed using scanning electron microscopy. The intermetallic compounds and the solder bump surface were analyzed by energy-dispersive X-ray spectroscopy and X-ray diffraction, respectively. Findings – The experimental results showed that rapid thermal cycling had an evident influence on the surface and interfacial microstructure of a single solder joint. The experiment revealed that microcracks originate and propagate on the superficial oxide of the solder bump after rapid thermal cycling. Originality/value – Analysis, based on finite element modeling and metal thermal fatigue mechanism, determined that the rimous cracks can be explained by the heat deformation theory and the function of temperature distribution in materials physics.


2021 ◽  
Vol 18 (3) ◽  
pp. 97-112
Author(s):  
Paul. T. Vianco ◽  
Alice. C. Kilgo ◽  
Bonnie. B. McKenzie ◽  
Shelley Williams ◽  
Robert Ferrizz ◽  
...  

Abstract The performance and reliability were documented for solder joints made between the 96.5Sn-3.0Ag-0.5Cu (wt.%, abbreviated SAC305) Pb-free solder and a Ag-Pd-Pt thick film conductor on an alumina substrate. The Sheppard’s hook pull test was used to assess the solder joint strength. The Part 1 study confirmed that the solder joint fabrication process had a wide process window. The current study determined that the SAC305 solder joints maintained that robustness after accelerated aging at temperatures of 70–205°C and time durations of 5–200 d. Short-term aging of 5–10 d caused a peak in the pull strength peak that resulted from precipitation hardening by Ag-Pd and (Pd, Pt)xSny intermetallic compound (IMC) particles. The pull strengths did not decrease significantly after longer aging times at 70°C and 100°C; those conditions were accelerations of typical service lifetimes. Longer aging times at temperatures of 135–205°C resulted in a gradual, albeit not catastrophic, strength decrease when the precipitation hardening mechanism was lost to dissolution of the particle phases and their reprecipitation at the solder/alumina interface. The failure modes were ductile fracture in the solder except for the most severe aging conditions. These findings confirmed that the SAC305 solder/Ag-Pd-Pt thick film interconnections have excellent long-term reliability for hybrid microcircuit and high-temperature electronics applications.


Author(s):  
Abdullah Fahim ◽  
Kamrul Hasan ◽  
Jeffrey C. Suhling ◽  
Pradeep Lall

Abstract Electronic packages are frequently exposed to a thermal cycling environment in real life applications. Particularly, the plastic ball grid array (PBGA) is one of the most widely used electronic package, and consists of various component materials, e.g. solder joint, silicon die, die attachment adhesive, mold compound, solder mask, etc. All of these materials play a significant role on the reliability of the overall package. Failure under creep deformation is one of the significant failure mode for electronic packages. Hence, it is important to study their creep behavior and evolution under the thermal cycling environment. These changes must be evaluated in order to understand and predict their failure behavior due to creep damage in operation. In our previous study, evolution of mechanical properties of SAC305 solder joints in a PBGA package up to 250 thermal cycles was evaluated using the nanoindentation technique. In this work, nanoindentation technique was utilized to understand the evolution of creep behavior of the SAC305 solder joint, die attachment adhesive, silicon die, and solder mask material for various durations of thermal cycling. Test specimens were first prepared by cross sectioning a PBGA package to reveal the different materials, followed by surface polishing to facilitate SEM imaging and nanoindentation testing. After preparation, the package samples were thermally cycled from T = −40 to 125 °C in an environmental chamber. At various points in the cycling (e.g. after 0, 50, 100, 250 and 500 cycles), the package was taken out from the chamber, and nanoindentation was performed on above mentioned materials to obtain creep behavior at room temperature (25 °C). From the nanoindentation test data, it was found that creep deformation of SAC305 increased upto 500 cycles. Die attachment and solder mask materials showed initial decrease in creep deformation up to 250 cycles and then increased value at 500 cycles. As expected, the silicon die material does not show any significant change in creep deformation behavior upto 500 cycles.


2008 ◽  
Vol 59 ◽  
pp. 177-181 ◽  
Author(s):  
Michael Schöbel ◽  
G. Fiedler ◽  
Hans Peter Degischer ◽  
W. Altendorfer ◽  
Sebastien Vaucher

Particle reinforced metal matrix composites are developed for heat sink applications. For power electronic devices like IGBT modules (Insulated Gate Bipolar Transistor) a baseplate material with high thermal conductivity combined with a low coefficient of thermal expansion is needed. Commonly AlSiC MMC are used with a high volume content of SiC particles (~ 70 vol.%). To improve the performance of these electronic modules particle reinforced materials with a higher thermal conductivity are developed for an advanced thermal management. For this purpose highly conducting diamond particles (TC ~ 1000 W/mK) are embedded in an Al matrix. These new diamond reinforced MMC were investigated concerning their thermal fatigue mechanisms compared to the common AlSiC MMC. Differences in reinforcement architecture and their effects on thermal fatigue damage were studied by in situ synchrotron tomography during thermal cycling.


Sign in / Sign up

Export Citation Format

Share Document