Influence of Pleat Deformation on Pressure Drop for a High-Efficiency Particulate Air Filter: A Small-Scale Experimental Approach

2016 ◽  
Vol 3 (1) ◽  
Author(s):  
S. Bourrous ◽  
L. Bouilloux ◽  
P. Nerisson ◽  
D. Thomas ◽  
J. C. Appert-Collin

For industrial or domestic applications, the wide range of use of pleated filters makes the understanding of their airflow behavior a major issue for designer and users. In all industrial installations dealing with radioactive matter, the containment of pollutants must be ensured. High-efficiency particulate air (HEPA) filters are used as the last purification stage before the air is rejected in the environment. These filters can be used either alone, in the case of nonsensible installation, or coupled with other filtration devices disposed before it where contamination level could be important. The prediction of their pressure drop is very important in nuclear safety to be able to anticipate any dysfunction or rupture of these devices. It has been observed that geometry of the medium has an influence on the pressure drop of a pleated filter. In the case of HEPA filters, no convincing explanation has been brought to explain their airflow behavior. The pressure drop evolution of the filter during the clogging remains difficult to explain by assuming constant pleat geometry. Some studies show that deformation occurs during the filter use, which could induce an increase of the available volume in the pleat and a reduction of the efficient filtration surface. The increase in computation capacity introduces nowadays the possibility to perform complex simulation, taking into account the effect of fluids on sensible devices. This can be the case for simple structural analysis or for more complex analysis such as vibration induced by gas or fluid flow. It is mostly applied to avoid breaking or deformation of safety devices, and this can also be applied to anticipate the fluid behavior of some special devices such as filters. In classical filtration application, properties of the filter are coupled with particle deposition (e.g., changes in geometry and permeability depend on the thickness of the deposit). The studies concerning mechanical properties of filters are mainly performed for liquid filtration and clean filters. For pleated filters, the complexity of this kind of analysis remains the modification of the link between geometry, pressure drop, mechanical strength, and particle transport and accumulation inside the pleat. As a first approach, it has been chosen to combine an experimental and a numerical approach to improve the understanding of filter behavior. In this paper, the pleat deformation will be investigated using a direct nonintrusive laser measurement performed on a single pleat experiment. The rate of filtration surface lost will be estimated using these data and taken into account to evaluate the pressure drop against the filtration velocity. Results obtained show that the pleat deformation is an important parameter, which influences the geometry of the pleat.

Author(s):  
J. Schiffmann

Small scale turbomachines in domestic heat pumps reach high efficiency and provide oil-free solutions which improve heat-exchanger performance and offer major advantages in the design of advanced thermodynamic cycles. An appropriate turbocompressor for domestic air based heat pumps requires the ability to operate on a wide range of inlet pressure, pressure ratios and mass flows, confronting the designer with the necessity to compromise between range and efficiency. Further the design of small-scale direct driven turbomachines is a complex and interdisciplinary task. Textbook design procedures propose to split such systems into subcomponents and to design and optimize each element individually. This common procedure, however, tends to neglect the interactions between the different components leading to suboptimal solutions. The authors propose an approach based on the integrated philosophy for designing and optimizing gas bearing supported, direct driven turbocompressors for applications with challenging requirements with regards to operation range and efficiency. Using previously validated reduced order models for the different components an integrated model of the compressor is implemented and the optimum system found via multi-objective optimization. It is shown that compared to standard design procedure the integrated approach yields an increase of the seasonal compressor efficiency of more than 12 points. Further a design optimization based sensitivity analysis allows to investigate the influence of design constraints determined prior to optimization such as impeller surface roughness, rotor material and impeller force. A relaxation of these constrains yields additional room for improvement. Reduced impeller force improves efficiency due to a smaller thrust bearing mainly, whereas a lighter rotor material improves rotordynamic performance. A hydraulically smoother impeller surface improves the overall efficiency considerably by reducing aerodynamic losses. A combination of the relaxation of the 3 design constraints yields an additional improvement of 6 points compared to the original optimization process. The integrated design and optimization procedure implemented in the case of a complex design problem thus clearly shows its advantages compared to traditional design methods by allowing a truly exhaustive search for optimum solutions throughout the complete design space. It can be used for both design optimization and for design analysis.


2018 ◽  
Vol 7 (3.32) ◽  
pp. 59
Author(s):  
Zhylkybaev Oral ◽  
Alimzhanova Mereke ◽  
Ashimuly Kazhybek ◽  
Shoinbekova Sabina ◽  
Tukenova Zulfia

Synthesis of new potential plant growth regulators (analogues of natural phytohormones) is accomplished by mixing an equimolar mixture of aryloxypropin and 1-methylpiperidin-4-one under the conditions of Favorsky's reactions. New derivatives of acetylene aminoalcohols - the ZhOT series - have been obtained. The structure of the synthesized compounds was established by IR and NMR 1H spectroscopy. Screening of their water-soluble forms, on wheat and barley seeds, two preparations (ZhOT-4 and ZhOT-7) were selected, which exceed both the control and standards of known phytohormones, such as heteroauxin (indolyl-3-acetic acid), 6-BAP (6-benzylaminopurine) for further testing. Conducted in-depth laboratory and demonstration field tests on cereals (wheat and barley) showed high efficiency of ZhOT-4 and ZhOT-7, the indicators of which exceeded the well-known reference preparation - Agrostimulin (Ukraine). The growth regulating activity of synthesized compounds was determined. Processing of wheat seeds ZhOT-4 and ZhOT-7 increased the field germination of seeds, plant height, leaf area, the mass of the aerial part and the total area. The conducted studies showed that the biological activity of the tested compounds largely depends on the concentration and the best growth regulator is ZhOT-4. The activity of the synthesized growth regulatory compounds has been determined. Treatment of seeds of with ZhOT-4 and ZhOT-7 increased seed germination, height of plants, leave areas, weight of an elevated part and the total area, weight of an elevated part and the total area. Studies have shown that the biological activity of tested compounds is largely dependent on the concentration and the best growth regulator is ZhОТ-4. Thus, the advanced laboratory and demonstration (small-scale) comparative tests of ZhOT-4 and ZhOT-7 and the well-known reference preparation "Agrostimulin" (Ukraine) for cereals (wheat and barley) showed high efficiency of new synthesized preparations. The use of ZhOT preparations increases the germination and germination energy, the number of spikelets, the mass of grains, the bushiness and the yield of wheat and barley, leads to the accumulation of dry mass in both the ground and underground parts of plants. The advantages of ZhOT-4 and ZhOT-7 are: high efficiency, a wide range of cultures, good solubility in water, low application dose of 0.0001% by active ingredient (1g per 1t of water) or 13-50 mg per hectare, comparable to natural phytohormones, long shelf life, safety, high yield of target products, sequential 3-stage reaction in one reactor. 


Author(s):  
Jose´ Carlos Teixeira ◽  
Rui Ferreira ◽  
Manuel Eduardo Ferreira

Environmental concerns and the drive to reduce the dependence on petroleum based fuels brought the use of renewable energies to the forefront. Biomass appears as a very interesting option for direct conversion into heat. In this context, densified forms of biomass such as pellets are of great relevance because of their easy of use, high efficiency and low emissions. Expected trends in the biomass market suggest that equipments should operate over a wide range of thermal loads and with fuels derived from lower quality raw materials; simultaneously, a high efficiency and low emissions are taken for granted. Currently, biomass domestic boilers prove to be very sensitive to fuel characteristics and load conditions. This work reports on the development of a 15 kW net pellet boiler. A prototype was built that enables the independent control of the air supply into various regions of the combustion chamber and an accurate supply of fuel. The test rig also includes: boiler and flue gases extraction system; feeding system; heat dissipation system; flue gas analyzer; data acquisition system and all sensors. In order to optimize the combustion conditions, pollutant emissions and their relation with feeding conditions, primary and secondary air flow rate and excess of air was analyzed. The results suggest that this burner is a promising for implementation in domestic boilers. The advantages are: CO emissions well below those observed in similar equipments and the capacity to maintain the emissions level constant under different loading conditions.


2014 ◽  
Vol 622-623 ◽  
pp. 625-631
Author(s):  
Ugo Ripert ◽  
Lionel Fourment

The 3D finite element simulations of processes like multi-pass rolling or drawing often result into exorbitant computational times that make the numerical approach almost infeasible while only the “stationary” step of the process is actually of interest for the industry. Therefore, it can be advantageously simulated by resorting to steady-state formulations which allows reducing the calculation time by, at least, an order of magnitude with respect to more conventional methods where the steady regime is incrementally calculated. A general and robust formulation is developed; it is suitable for parallel computing, compatible with unstructured meshes and general enough to apply to a wide range of forming processes. It consists in alternatively resolving the “simple” steady-state material forming problem for a given domain geometry and then computing the domain corrections that allow satisfying the free surface condition. Within the “simple forming problem”, a Streamline Upwind Petrov Galerkin (SUPG) method is used to integrate the state variables along the streamlines. For the domain geometry correction, a Least Squares formulation with an Upwind shift is introduced. The two resolutions are coupled by the contact equations. This method is applied to several metal forming problems such as 3D rolling and drawing. Results show the high efficiency of the method with respect to an incremental resolution. Computational time is reduced by a factor ranging between 20 and 30. Results are as accurate as with an incremental method. Convergence is always reached whatever the initial geometry of the domain at the beginning of the iterative algorithm.


Author(s):  
W. Adrugi ◽  
Y. S. Muzychka ◽  
K. Pope

In this paper, the pressure drop of liquid-liquid segmented flow in small-scale tubing is investigated with experimental and analytical methods. A theoretical model is developed for describing the total pressure drop as a function of slug length and Capillary number. The experiments are conducted with low Reynolds number flows in horizontal, straight mini-scale tubes. A segmented (Taylor) flow is created using several low viscosity silicone oils (1, 3, 5 cSt) and water with a wide range of flow rates. The experimental setup allows the independent variation of liquid slug lengths. The liquids are injected into the mini-scale tubes at a variable (pulsed) flow rate for one liquid, and a constant flow rate for another liquid. The variation of liquid types and flow rates causes numerous combinations of Prandtl, Reynolds, and Capillary numbers to be tested. The theoretical and experimental data is presented in terms of the dimensionless groups fRe or ΔP* and Le* to predict pressure drop in liquid-liquid Taylor flow. The new experimental data agrees well with the new theoretical model of Taylor flow in miniscale tubes. The results of this paper indicate the pressure drop for Taylor flow is higher than in single-phase flow, likely due to the interfacial effects in liquid slugs.


Author(s):  
Alilou Youssef ◽  
Bourrous Soleiman ◽  
Thomas Dominique ◽  
Bardin-Monnier Nathalie ◽  
Nérisson Philippe ◽  
...  

In hazardous industrial activities such as in nuclear facilities, High Efficiency Particulate Air filters (HEPA filters) are essential to ensure the containment of airborne contamination. Most of the filters used in ventilation networks are pleated, in order to offer a larger surface of filtration. For industrial risks likely to lead to an important release of particles (e.g. fire), predicting the evolution of the pressure drop of pleated filters is very important, in order to anticipate any dysfunction, failure or breaking of these devices. Pressure drop variations are linked to airflow rate variations and to clogging process of the medium by airborne particles. Thus, the airflow pattern in a pleat channel is essential for optimizing the filter design and enhancing its lifetime. Particles are transported by the airflow and deposited at the filter surface; hence, the geometry of the dust cake (shape and location) is partially determined knowing the velocity streamlines. The present paper focuses on the characterization of airflows in a clean HEPA filter. The difficulty to perform fine measurement on a real scale filter led us to develop an experimental device, consisting in the reproduction of a single pleat, identical to a real pleat constituting industrial filters. The small dimension of the pleat makes the velocity measurement difficult to establish. That is why μ-PIV method has been adapted to measure the velocity field inside the filter for different filtration velocities at the first moments of the experiment, in order to avoid the impact of clogging by particles used to seed the flow. These particles are DEHS droplets 0.01 < St < 0.05. In the future, these well-characterized airflows will be the basis for CFD computation of particle transport and deposition inside the pleats. Ultimately, the aim is to develop or upgrade physical models predicting the pressure drop evolution of pleated filters, during clogging process in accidental situations.


2019 ◽  
Author(s):  
Michael Oschmann ◽  
Linus Johansson Holm ◽  
Oscar Verho

Benzofurans are everywhere in nature and they have been extensively studied by medicinal chemists over the years because of their chemotherapeutic and physiological properties. Herein, we describe a strategy that can be used to access elaborate benzo-2-carboxamide derivatives, which involves a synthetic sequence of 8-aminoquinoline directed C–H arylations followed by transamidations. For the directed C–H arylations, Pd catalysis was used to install a wide range of aryl and heteroaryl substituents at the C3 position of the benzofuran scaffold in high efficiency. Directing group cleavage and further diversification of the C3-arylated benzofuran products were then achieved in a single synthetic operation through the utilization of a two-step transamidation protocol. By bocylating the 8-aminoquinoline amide moiety of these products, it proved possible to activate them towards aminolysis with different amine nucleophiles. Interestingly, this aminolysis reaction was found to proceed efficiently without the need of any additional catalyst or additive. Given the high efficiency and modularity of this synthetic strategy, it constitute a very attractive approach for generating structurally-diverse collections of benzofuran derivatives for small molecule screening.


Author(s):  
S.V. Borshch ◽  
◽  
R.M. Vil’fand ◽  
D.B. Kiktev ◽  
V.M. Khan ◽  
...  

The paper presents the summary and results of long-term and multi-faceted experience of international scientific and technical cooperation of Hydrometeorological Center of Russia in the field of hydrometeorology and environmental monitoring within the framework of WMO programs, which indicates its high efficiency in performing a wide range of works at a high scientific and technical level. Keywords: World Meteorological Organization, major WMO programs, representatives of Hydrometeorological Center of Russia in WMO


2021 ◽  
Vol 11 (14) ◽  
pp. 6549
Author(s):  
Hui Liu ◽  
Ming Zeng ◽  
Xiang Niu ◽  
Hongyan Huang ◽  
Daren Yu

The microthruster is the crucial device of the drag-free attitude control system, essential for the space-borne gravitational wave detection mission. The cusped field thruster (also called the High Efficiency Multistage Plasma Thruster) becomes one of the candidate thrusters for the mission due to its low complexity and potential long life over a wide range of thrust. However, the prescribed minimum of thrust and thrust noise are considerable obstacles to downscaling works on cusped field thrusters. This article reviews the development of the low power cusped field thruster at the Harbin Institute of Technology since 2012, including the design of prototypes, experimental investigations and simulation studies. Progress has been made on the downscaling of cusped field thrusters, and a new concept of microwave discharge cusped field thruster has been introduced.


Ecotoxicology ◽  
2021 ◽  
Author(s):  
Daesik Park ◽  
Catherine R. Propper ◽  
Guangning Wang ◽  
Matthew C. Salanga

AbstractNaturally occurring arsenic is toxic at extremely low concentrations, yet some species persist even in high arsenic environments. We wanted to test if these species show evidence of evolution associated with arsenic exposure. To do this, we compared allelic variation across 872 coding nucleotides of arsenic (+3) methyltransferase (as3mt) and whole fish as3mt gene expression from three field populations of Gambusia affinis, from water sources containing low (1.9 ppb), medium-low (3.3 ppb), and high (15.7 ppb) levels of arsenic. The high arsenic site exceeds the US EPA’s Maximum Contamination Level for drinking water. Medium-low and high populations exhibited homozygosity, and no sequence variation across all animals sampled. Eleven of 24 fish examined (45.8%) in the low arsenic population harbored synonymous single nucleotide polymorphisms (SNPs) in exons 4 and/or 10. SNP presence in the low arsenic population was not associated with differences in as3mt transcript levels compared to fish from the medium-low site, where SNPs were noted; however, as3mt expression in fish from the high arsenic concentration site was significantly lower than the other two sites. Low sequence variation in fish populations from sites with medium-low and high arsenic concentrations suggests greater selective pressure on this allele, while higher variation in the low population suggests a relaxed selection. Our results suggest gene regulation associated with arsenic detoxification may play a more crucial role in influencing responses to arsenic than polymorphic gene sequence. Understanding microevolutionary processes to various contaminants require the evaluation of multiple populations across a wide range of pollution exposures.


Sign in / Sign up

Export Citation Format

Share Document