Experimental and Simulation Results of a Cam and a Flat-Faced Follower Mechanism

Author(s):  
Louay S. Yousuf ◽  
Dan B. Marghitu

In this study, a cam and a flat-faced follower system with impacts and friction at the contact points are analyzed. The dynamic analysis has been done by simulating the follower displacement at a uniform cam angular velocity. Impact and friction are considered to determine the Lyapunov exponent based on different follower guides' clearances and cam rotational speeds. The simulation analysis has been carried out using solidworks. An experimental procedure is developed to capture the follower position through high-resolution optical markers mounted on the moving link. The experimental results are compared with the simulation results.

2020 ◽  
Vol 12 (9) ◽  
pp. 168781402095780
Author(s):  
Mei Fang ◽  
Zhihong Yu ◽  
Wenjie Zhang

Throwing device is an important factor that directly affects the performance of chaff cutter. In this work, the dynamic analysis linked with the problem of low efficiency and residue blockage of disc knife chaff cutter is executed. Based on this perspective, the mathematical model, simulation, and testing of the material movement have been carried out. Simulations are performed in MATLAB/Simulink environment. An anemometer records the airflow velocity, which provides data for simulation analysis. The simulation results showed that during the movement along the blade, the material first performs deceleration and then accelerates; in other stages, only deceleration. And finally calculated the throwing distance. To support the presented simulations, an experimental study is conducted. The experimental results are compared with simulation results, the maximum relative error between the simulated value and the experimental value is 9.42%, which verified the correctness of the model. This research provides a theoretical basis for the structural design, parameter optimization, and matching of the chaff cutter.


2014 ◽  
Vol 543-547 ◽  
pp. 1305-1308
Author(s):  
Xiao Feng Liu ◽  
Jing Wei Yu ◽  
Hai Tao Wang ◽  
Zhao Wen Fang

For helicopter structural characteristics, this article focuses on the helicopter to take off, hover and other state aerodynamic analysis, the establishment of the fuselage-landing gear dynamics model; while the helicopter simulator simulation system are described, and the kinetic model was built simulation analysis, simulation results and the actual flight conditions consistent, indicating that the model is correct, there is a certain reference value.


2012 ◽  
Vol 197 ◽  
pp. 577-584
Author(s):  
De Gang Wang

In this paper, the study object is a vibrating screen driven by two motors. A new analytical method is proposed to study the dynamic feature of the screen. With introduction of two small variable parameters to average angular velocity of two exciters and their phase difference, the parameters of the model were dimensionless processed, and then the synchronization condition and stability condition of the vibrating screen were deduced. Computer simulation results based on synchronization condition and stability condition show that the vibrating screen realizes speed synchronization and phase synchronization, the system is in a good self-synchronous state.


Author(s):  
R. W. Toogood

Abstract A number of programs have been developed for the automatic symbolic generation of efficient computer code for the dynamic analysis of serial rigid and flexible link manipulators. Code for both the inverse and the direct dynamics computations can be generated. The symbolic generators allow the robot base to be given an arbitrary linear acceleration anchor angular velocity and acceleration. The efficiency of the generated code is an important consideration for simulation studies and/or implementation in control systems. This paper briefly describes the symbolic generation and simplification techniques. The added computational load due to including the base motion is discussed. Some dynamics simulation results are presented for a 3R rigid link manipulator mounted on an oscillating base, which graphically illustrates the effect of the base movement on the dynamics.


2021 ◽  
Author(s):  
Qiongxiao Wu ◽  
Jianjun Wang ◽  
Jingming Chen ◽  
Pengzheng Li

Abstract Based on the one-dimensional simulation model of lubricating oil system is established and analyzed by using FLOWMASTER software, this paper proposes a new method of optimizing lubricating oil system by PID technology. Ensure that the configuration requirements and control strategies of the relevant accessories of the simulation model are satisfied with the design requirements. Firstly, by simulating lubricating oil pressure fluctuation and lubricating oil flow distribution under Open/Close Valve in different opening and closing time, the optimal opening/closing time of Open/Close Valve is determined to be 0.2 s and 0.5 s respectively. Secondly, by writing the controller script file combined with a controller to realize automatic unloading relief valve simulation, determine the relief valve pressure regulating range of 0∼0.38 MPa, For precision of constant pressure valve of oil spill, the simulation results show that the average 10 m3/h flow caused by pressure changes of about 0.06 MPa. Under the flow sudden change signal of about 40 m3/h, the maximum pressure change is less than 0.1 MPa. Through the simulation results, it is found that most of the lubrication parts in the original design have the phenomenon of flow redundancy, which causes unnecessary pump power loss. The system is optimized by PID technology. By comparing the simulation results before and after optimization, it is found that the speed of constant displacement pump could be changed in time by PID controller, and the flow redundancy could be improved significantly, so the lubricating oil system could be lower consumption and achieve the purpose of optimization.


Author(s):  
Louay S. Yousuf ◽  
Dan B. Marghitu

In this study a cam and follower mechanism is analyzed. There is a clearance between the follower and the guide. The mechanism is analyzed using SolidWorks simulations taking into account the impact and the friction between the roller follower and the guide. Four different follower guide’s clearances have been used in the simulations like 0.5, 1, 1.5, and 2 mm. An experimental set up is developed to capture the general planar motion of the cam and follower. The measures of the cam and the follower positions are obtained through high-resolution optical encoders (markers). The effect of follower guide’s clearance is investigated for different cam rotational speeds such as 100, 200, 300, 400, 500, 600, 700 and 800 R.P.M. Impact with friction is considered in our study to calculate the Lyapunov exponent. The largest Lyapunov exponents for the simulated and experimental data are analyzed and selected.


Author(s):  
Yangbing Zheng ◽  
Xiao Xue ◽  
Jisong Zhang

In order to improve the fault diagnosis effectiveness of hydraulic system in erecting devices, the fuzzy neural neural network is applied to carry out fault diagnosis of hydraulic system. Firstly, the main faults of hydraulic system of erecting mechanism are summarized. The main faults of hydraulic system of erecting devices concludes abnormal noise, high temperature of hydraulic oil of hydraulic system, leakage of hydraulic system, low operating speed of hydraulic system, and the characteristics of different faults are analyzed. Secondly, basic theory of fuzzy neural network is studied, and the framework of fuzzy neural network is designed. The inputting layer, fuzzy layer, fuzzy relation layer, relationship layer after fuzzy operation and outputting layer of fuzzy neural network are designed, and the corresponding mathematical models are confirmed. The analysis procedure of fuzzy neural network is established. Thirdly, simulation analysis is carried out for a hydraulic system in erecting device, the BP neural network reaches convergence after 600 times iterations, and the fuzzy neural network reaches convergence after 400 times iterations, fuzzy neural network can obtain higher accuracy than BP neural network, and running time of fuzzy neural network is less than that of BP neural network, therefore, simulation results show that the fuzzy neural network can effectively improve the fault diagnosis efficiency and precision. Therefore, the fuzzy neural network is reliable for fault diagnosis of hydraulic system in erecting devices, which has higher fault diagnosis effect, which can provide the theory basis for healthy detection of hydraulic system in erecting devices.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Lei Xu ◽  
Ning Zhang ◽  
Liqing Fang ◽  
Huadong Chen ◽  
Pengfei Lin ◽  
...  

The magnetic gradient full-tensor measurement system is diverse, and the magnetometer array structure is complex. Aimed at the problem, seven magnetic gradient full-tensor measurement system models are studied in detail. The full-tensor measurement theories of the tensor measurement arrays are analyzed. Under the same baseline distance, the magnetic dipole model is used to simulate the measurement system. Based on different measurement systems, the paper quantitatively compares and analyzes the error of the structure. A more optimized magnetic gradient full-tensor measurement system is suggested. The simulation results show that the measurement accuracy of the planar measurement system is slightly higher than that of the stereo measurement system. Among them, the cross-shaped and square measurement systems have relatively smaller structural errors and higher measurement accuracy.


2018 ◽  
Vol 2 (2) ◽  
pp. 96-107
Author(s):  
Freddy Wangke

The purpose of the study was to determine the effect of increasing expenditure and increasing the minimum wage of the government in the simultaneous model of the industrial sector of DKI Jakarta province. The estimation model in the simultaneous model of the industrial sector of DKI province uses the 2 SLS (Two-Stage Least Squares) method. The simulation results of a 10% increase in the expenditure of the provincial government of DKI has resulted in an increase of investment of 4.72%, production growth of 0.19%, employment of 0.17%, an increase in production costs by 0.24%, and company profits increased by 0.10%. On the other hand, the simulation results of a 10% increase in the provincial minimum wage has resulted in a decrease in labor absorption by 0.55%, a decrease in production in the industrial sector has resulted in 0.21%, a decrease in investment by 0.07%, and a decrease in production costs by 0.04%.


Sign in / Sign up

Export Citation Format

Share Document