Effect of Tungsten Inert Gas Remelting on Microstructure, Interface, and Wear Resistance of Fe-Based Coating

Author(s):  
Tianshun Dong ◽  
Xiaodong Zheng ◽  
Guolu Li ◽  
Haidou Wang ◽  
Ming Liu ◽  
...  

Tungsten inert gas arc (TIG) process was employed to remelt Fe-based coating deposited by plasma spraying. Subsequently, the microstructure, interface, and the wear resistance of the coatings before and after remelting were studied. The results showed that the lamellar structure, pores, and inclusions of Fe-based coating were eliminated and the porosity significantly decreased from 4% to 0.4%. The as-sprayed coating contained microcrystalline region, nanocrystalline region, and transition region, while single crystal region and rod-shaped (Fe,Cr)23C6 were observed in the remelted coating. There was no element diffusion and dissolution phenomenon at the interface; thus, the bonding form between the as-sprayed coating and substrate mainly was mechanical bonding. On the contrary, the diffusion transfer belt (DTB) emerged at the interface of the remelted coating and substrate, the remelted coating was bonded with the substrate metallurgically. Additionally, the average microhardness and elastic modulus of the remelted coating increased by 33.4% and 53.2%, respectively, compared with the as-sprayed coating. During wear process, the as-sprayed coating exhibited obvious brittle fracture characteristics, while the remelted coating appeared typical plastic deformation characteristics and its weight loss reduced by 39.5%. Therefore, TIG remelting process significantly improved the microstructure, mechanical properties, and wear resistance of Fe-based coating.

Tribologia ◽  
2018 ◽  
Vol 280 (4) ◽  
pp. 97-105
Author(s):  
Wojciech RYNIEWICZ ◽  
Mariola HERMAN ◽  
Anna M. RYNIEWICZ ◽  
Łukasz BOJKO ◽  
Paweł PAŁKA

The development of the interphase structure of polymer nanocomposites provides them with tribological properties difficult to obtain in traditional microfiller composites and microhybrid composites. In material solutions, it is preferable to modify the parameters of the material in order to obtain properties that are as close to the hard tissues of the teeth as possible. The aim of the study is to compare the wear resistance of new light-cured nanocomposites and to analyse the surface layer and structure before and after the wear process. Recently developed modern materials were selected for the study. In nanocomposites, G-aenial, G-aenial X FLO, and Essentia, an optimal structure was found in SEM images before and after wear, as well as low resistance to sliding friction and resistance to tribological wear. All tested composites were characterized by suitable properties for clinical applications.


2020 ◽  
Vol 4 (141) ◽  
pp. 157-163
Author(s):  
IL’YA ROMANOV ◽  
◽  
ROMAN ZADOROZHNIY

When applying coatings using various methods on the surfaces of moving parts that work in joints, it is important to make sure that the coatings are strong and wear-resistant in order to return them to their original resource. All existing hardening technologies and materials used to perform coatings have their own characteristics, therefore, the quality of the resulting coatings can be judged only after specific tests. (Research purpose) The research purpose is in evaluating the properties of the coating obtained by the method of electric spark hardening, and its ability to resist friction and mechanical wear. (Materials and methods) Authors conducted tests on the basis of the "Nano-Center" center for collective use. A coating was applied on the BIG-4M unit with a VK-8 hard alloy electrode, tribological properties were evaluated on a CSM Instruments TRB-S-DE-0000 tribometer, the width of the friction track was measured after the test using an inverted OLYMPUS gx51 optical microscope, and samples were weighed before and after the test on a VLR-200 analytical balance. Conducted research in accordance with GOST 23.224-86 and RD 50-662-88 guidelines. (Results and discussion) The article presents performed tests on the run-in and wear resistance of the coating. The samples were worked on with a step-by-step increase in the load. During the tests, the friction force was drawed on the diagram. Authors compared the results with the reference sample, an uncoated surface. (Conclusions) The resulting coating has better run-in and wear resistance compared to the standard, and the increase in wear resistance in dry friction conditions is very significant.


2016 ◽  
Vol 254 ◽  
pp. 231-236 ◽  
Author(s):  
Ion Dragoş Uţu ◽  
Gabriela Marginean ◽  
Iosif Hulka ◽  
Viorel Aurel Şerban

Microstructure and wear properties of the Al2O3-13.wt% TiO2 thermally sprayed coatings before and after remelting were investigated in this study. The coatings were deposited on a pure titanium substrate using the atmospheric plasma spraying (APS) process. The as-sprayed coatings were electron beam (EB) modified in order to improve their compactness and bonding strength.The effect of EB remelting on the microstructure, phase constituents and wear properties was investigated using scanning electron microscopy (SEM), X-Ray diffraction technique and hardness measurements. The sliding wear behavior was tested using a pin on disk method.The results showed that the remelting process had a positive effect removing the lamellar defect of the as-sprayed coating and improving the compactness, hardness and wear behavior.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2112
Author(s):  
Saverio Affatato ◽  
Paolo Erani ◽  
Maurizio Fersini ◽  
Vincenzo Contaldi ◽  
Anna Rita Terrizzi ◽  
...  

Success of total knee replacement (TKR) depends on the prosthetic design and materials. The use of metal components is well established with the disadvantage of allergic reactions. Ceramics have been recently proposed because of high wear resistance, excellent biocompatibility, wettability, and suitable mechanical properties. This study was aimed at investigating in vitro wear resistance of Zirconia Toughened Alumina (ZTA)/Ultra-high-molecular-weight polyethylene (UHMWPE) of TKR femoral components. An in vitro protocol was designed with the application of relevant load profile, 6-degrees-of-freedom knee simulator, and 8 × 105 cycles on the ZTA/UHMWPE configuration under bovine calf serum. Before and after wear test, the femoral components were investigated by using the Scanning Electron Microscope (SEM) and the X-Ray Diffraction (XRD) analyses, and stylus surface roughness measurements. The proposed pre-clinical test yielded repeatable results. In particular, gravimetric results showed that, after 8 × 105 cycles, the mean weight loss of the polyethylene mobile components is 5.3 ± 1.1 mg. The surface roughness measurements (Ramax) performed after the wear test showed no significant variation on the UHMWPE menisci. A slight increase of roughness has been found on the ZTA (0.02 µm before wear test, 0.28 µm after the test). SEM observations did not show significant modification of the surface morphology. Tetragonal to monoclinic phase ratio was measured by XRD before and after wear test to evaluate stability of tetragonal ZrO2 phase. Minimal conversion of tetragonal to monoclinic phase was found from 5.4 to 8%. Although this study is a preliminary evaluation limited to in vitro tests, it provides novel pre-clinical indications about the potential of ceramic TKR femoral components.


2021 ◽  
Vol 316 ◽  
pp. 893-898
Author(s):  
Natalya Gabelchenko ◽  
Artem Belov ◽  
Artem Kravchenko ◽  
Oleg Kryuchkov

We conducted comparative tests of the wear resistance of metals operating under abrasive conditions. Samples were cut from the working parts of mixer-pneumosuperchargers. The chemical composition and mechanical properties were determined. To compare samples under abrasive wear conditions, we designed and assembled a carousel installation. The principle of its operation is based on mixing the abrasive medium by the samples being studied with a given speed. Wear resistance was evaluated by weight loss by samples after several test cycles. To determine changes in the structure of the metal during abrasive wear, metallographic studies of the samples were carried out before and after the tests. It is shown that the best complex of service and mechanical properties is possessed by 110G13L steel.


2018 ◽  
Vol 2018 ◽  
pp. 1-6
Author(s):  
Wilson Matsumoto ◽  
Paula Pastana Beraldo ◽  
Rossana Pereira de Almeida ◽  
Ana Paula Macedo ◽  
Beatriz Roque Kubata ◽  
...  

Purpose. The objective of this study was to evaluate the marginal fit and the flexural resistance of nickel-chromium frameworks welded by different techniques, gas-torch, laser, and tungsten inert gas (TIG), compared with that of frameworks made via one-piece casting. Methods. To evaluate the marginal fit, a master model was fabricated simulating four implants. Transfers and replicas were used to transfer the positions of the implants to the model, using a silicone matrix. The bars were waxed up and casted. Three assessments of misfit were performed for each implant using a stereomicroscope before and after welding in two predetermined regions, totaling six readings for each implant. To evaluate the flexural resistance, one group was made casting the specimens in one piece. Other 3 groups using gas-torch, laser, and TIG welding techniques were made after sectioned transversally. The data showed normal distribution and two-way ANOVA for marginal fit and one-way ANOVA for flexural resistance, and Tukey’s posttest (α=0.05) was performed. Results. For the marginal fit, the three welding methods presented similar results and were different from one-piece casting. For the flexural resistance, significant differences were observed among the studied groups (p<0.001), and the one-piece group presented higher resistance compared to the three welding techniques. Conclusions. Within the limits of this study, the three welding techniques yielded similar misfit results, and the laser and TIG techniques presented similar flexural resistance but lower than gas-torch and one-piece casting.


2013 ◽  
Vol 20 (4) ◽  
pp. 307-310
Author(s):  
Li Wei

AbstractA hard SiC-B4C reinforced composite coating was fabricated by laser alloying of SiC-B4C+Al-Sn-Mo-Y2O3 mixed powders on a Ti-3Al-2V alloy. Al-Sn-Mo mixed powders were first used in the laser alloying technique to improve the wear resistance of titanium alloys. Proper selection of the laser alloying process parameters allows us to obtain a composite coating with a metallurgical combination with substrate. Under the action of Mo, fine particles with high microhardness were produced in the coating matrix and also hindered the formation of adhesion patches and deep plowing grooves during the sliding wear process, leading to the improvement of wear resistance of a titanium alloy substrate surface.


2021 ◽  
Vol 3 (144) ◽  
pp. 100-107
Author(s):  
Aleksandr M. Mikhal’chenkov ◽  
◽  
Anna A. Tyureva ◽  
Ivan A. Borshchevskiy ◽  
Larisa S. Kiseleva

The widespread use of polymer-based composite materials made it possible to replace expensive metal alloys, increase the strength indicators of structures and improve tribotechnical properties. Their use as protective coatings for structural elements operating in an abrasive environment has yielded good results in increasing wear resistance, which is especially important for parts of tillage tools. (Research purpose) The research purpose is in studying the influence of the composition and size of the fractions of the composite gravel filler with an epoxy matrix on its wear. (Materials and мethods) The article considers five composite materials with different compositions. The prototypes were hollow cylinders with dimensions that provide the contact area necessary for the passage of all processes of abrasive wear. The abrasive composition consisted of a mixture of sand and gravel with a fraction size of about 30-40 millimeters. (Results and discussion) The changes in the wear over time are directly proportional and this confirms the classical views on the wear process. The experiments was conducted on the installation of authors’ design. (Conclusions) The wear over time for experimental composites is the same and is expressed in a straight- line relationship; the maximum wear resistance is a composite in which gravel particles have a size of 2.25 millimeters with its content in the matrix of about 60 mass parts. At the same time, gravel with an effective diameter of 2.25 millimeters creates optimal conditions for self-organization of the wear process and provides a relatively low value of the friction coefficient.


2021 ◽  
Vol 1016 ◽  
pp. 1235-1239
Author(s):  
Eleonora Santecchia ◽  
Marcello Cabibbo ◽  
Abdel Magid S. Hamouda ◽  
Farayi Musharavati ◽  
Anton Popelka ◽  
...  

The properties of anodized aluminum, and wear resistance in particular, are of high interest for the scientific community. In this study, discs of AA6082 were subjected to a peculiar hard anodizing process leading to anodized samples having different thicknesses. In order to investigate the wear mechanism of samples, unidirectional tribological tests were performed against alumina balls (corundum) under different loading conditions. Surface and microstructure of all the samples were characterized before and after the tribological tests, using different characterization techniques. The tribological tests showed remarkable differences in the friction coefficient and wear behavior of the anodized AA6082 samples, related to the microstructure modifications and to the specific applied sliding conditions.


2018 ◽  
Vol 27 (47) ◽  
pp. 101
Author(s):  
Sandra Arias ◽  
Maryory Gómez ◽  
Esteban Correa ◽  
Félix Echeverría-Echeverría ◽  
Juan Guillermo Castaño

Nickel-Boron autocatalytic coatings are widely used in several industries to improve mechanical properties of materials such as hardness and wear resistance. Tribological properties were evaluated in Ni-B autocatalytic coatings deposited on AISI/SAE 1018 carbon steel before and after a heat treatment at 450 °C for one hour. Tribological tests were carried out by dry sliding, using a load of 5 N and a sliding speed of 0.012 m/s, in a homemade ball-on-disk tribometer, which followed ASTM G99 standard. According to the tribological evaluation, the heat treatments applied to Ni-B coatings improved their tribological performance. This research corroborates that by applying an adequate heat treatment, hardness and wear resistance of Ni-B coatings can be improved significantly.


Sign in / Sign up

Export Citation Format

Share Document