Study on the Liquid Refrigerant Defrosting System and the Defrosting Rule

Author(s):  
Meng Wang ◽  
Runqing Zang ◽  
Hai Feng ◽  
Chaoqun Yu ◽  
He Wang ◽  
...  

The liquid refrigerant defrosting (LRD) is a defrosting method which leads the liquid refrigerant in the high-pressure reservoir to the frosting evaporator. The refrigeration process is continuous during the defrosting period, which increases the defrosting frequency. Compared with the traditional defrosting method, no large fin spacing should be left to reduce the defrosting frequency. The system can recover all the defrosting cooling capacity to improve the subcooling, so that the indoor air temperature fluctuations are avoided. In order to explore the effect and the rule of the LRD, the defrosting experiments were carried out in different frosting mass under the condition of the cold storage temperature of −20 °C. The defrosting time, temperature rise value, cooling capacity, and compressor power consumption value were calculated at the different frosting mass. Interpolation and applying the curve fitting equation helps to obtain remaining values. The relative humidity was calculated by the frosting mathematical model. Finally, the relationship between the coefficient of performance (COP) and the defrosting cycle (the sum of the defrosting time and the frosting time) was obtained. The experiments and theoretical research showed that the fluctuating value of cold storage temperature was about 5 °C and the defrosting time was about 30 min during the defrosting process. In the case of the relative humidity of 70%, 80%, 90%, the optimum defrosting cycle of the experiment was 16.4, 10.9, 7.5 h and the frosting mass was 2.66, 2.90, 3.22 kg, and the maximum COP was 1.51, 1.48, 1.45.

2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Yousuf Alhendal ◽  
Abdalla Gomaa ◽  
Gamal Bedair ◽  
Abdulrahim Kalendar

The energy and exergy of low-global warming potential (GWP) refrigerants were investigated experimentally and theoretically. Refrigerants with a modest GWP100 of  ≤ 150 can be sufficient for bringing down emissions which were concerned for the automotive air-conditioning system. Three types of low-GWP refrigerants, R152a, R1234yf, and R1234ze(E), were examined with particular reference to the current high-GWP of R134a. The effect of different evaporating and condensing temperatures in addition to compressor speed was considered. The purpose was to bring a clear view of the performance characteristics of possible environment friendly alternatives of R134a. The analysis was carried out with compressor power, cooling capacity, coefficient of performance, exergy destruction, and exergy efficiency. It was noted that the total exergy destruction of R1234yf was reduced by 15% compared to that of R134a. The refrigerant R1234ze(E) has the highest energetic and exergetic performance compared with the other investigated refrigerants.


Author(s):  
I. P. Koronaki ◽  
M. T. Nitsas ◽  
E. G. Papoutsis ◽  
V. D. Papaefthimiou

Thermally driven chillers also known as sorption heat pumps have drawn considerable attention in recent years. They can be divided into two main categories: absorption (liquid-vapor) and adsorption (solid-vapor) systems. Even though adsorption cycles have relatively lower coefficient of performance compared to absorption cycles, however they prevail in terms of heat source, electric consumption for moving parts, crystallization etc. In order to overcome the drawback of low COP and specific cooling capacity, nanofluids, i.e. mixtures of nanometer size particles well-dispersed in a base fluid, can be used as heat transfer fluids as recent experimental and theoretical research has proved that nanofluids can exhibit a significant increase on heat transfer. In this study a two bed, single-stage adsorption chiller which utilizes the silica gel-water pair as adsorbent-refrigerant is simulated. The cooling capacity and the COP of the chiller are calculated for various cycle times. The usage of nanofluids as heat transfer fluids in the chiller evaporator and condenser and their effect on chiller performance and size is investigated. It is proved that the presence of nanofluids at different volume concentrations will enhance the cooling capacity and the COP of the adsorption chiller and therefore will lead to smaller, in terms of size, heat exchangers.


Author(s):  
Azridjal Aziz ◽  
Muhammad Rif’at Syahnan ◽  
Afdhal Kurniawan Mainil ◽  
Rahmat Iman Mainil

Split air conditioning systems produce reasonable amount of condensate which is usually not utilized and thrown away to the environment. On the other hand, it consumes a lot of energy during operation. The aim of this study is to investigate the improvement of air conditioning systems performance utilizing condensate. A direct evaporative cooling using condensate is incorporated on a 0.74 ton-cooling capacity of split air conditioning to decrease the air temperature before entering the condenser. Performances of the split air conditioning with and without direct evaporative cooling are compared and presented in this paper. The results show that the use of direct evaporative cooling using condensate into the air before passing through the condenser reduces the compressor discharge pressure. The decrease of the condenser pressure led to 4.7% and 7% reduction of power consumption for air conditioner without cooling load and air conditioner with 2000 W cooling load, respectively. The cooling effect and coefficient of performance (COP) increase with the decrease of compressor power. The use of direct evaporative cooling with condensate into the air before entering the condensing system can enhance the system performance and protect the environment.


2001 ◽  
Vol 124 (1) ◽  
pp. 63-69 ◽  
Author(s):  
Dennis L. O’Neal ◽  
Angel Rodriguez ◽  
Michael Davis ◽  
Sekhar Kondepudi

An experimental study was conducted to quantify the effect of return air leakage from hot/humid attic spaces on the performance of a residential air conditioner. Tests were conducted in psychrometric facilities where temperatures and humidities could be controlled closely. The test air conditioner had a nominal cooling capacity of 12.3 kW and a seasonal coefficient of performance of 3.8. Return air leakage from hot attic spaces was simulated by assuming adiabatic mixing of the indoor air at normal conditions with the attic air at high temperatures. Effective capacity and coefficient of performance both decreased with increased return air leakage, leakage air temperature, and air humidity. Under attic conditions of 54.4°C and 20 percent relative humidity, 10% return leakage reduced the effective cooling capacity and coefficient of performance of the air conditioner by approximately 30%. Power consumption was relatively constant for all variables except outdoor temperature. The sensible heat ratio (SHR), which is a measure of the dehumidification performance, increased with increasing leakage.


2021 ◽  
Vol 1 (1) ◽  
pp. 23
Author(s):  
M.Pramuda Nugraha Sirodz ◽  
Lucyana Balqis

Abstrak Buncis merupakan salah satu produk pertanian di Indonesia yang diekspor ke luar negeri. Setelah dipanen, buncis disimpan untuk diproses sebelum diekspor ke konsumen. Kesegaran buncis umumnya hanya bertahan selama 1 minggu, oleh karena itu diperlukan alat khusus untuk mempertahankan kesegaran buncis sebelum diekspor ke konsumen. Untuk mempertahankan kesegaran buncis, temperatur udara 4°C-7°C dengan kelembaban 90%-95% perlu dipertahankan. Dengan menggunakan cold strorage, kondisi ruang penyimpanan dapat diatur sedemikian rupa agar memenuhi kriteria tersebut. Pada penelitian ini dirancang sebuah cold storage dengan kapasitas 10 ton untuk tanaman buncis. Cooling Load Temperatur Difference (CLTD) pada perancangan ini diatur bulan dan waktunya yang disesuaikan dengan posisi dari cold storage. Beban pendinginan total untuk 10 ton buncis adalah sebesar 46,73 kW. Cold storage hasil rancangan menggunakan siklus kompresi uap dengan fluida refrigeran R134a tanpa menggunakan humidifier. Untuk mempertahankan kondisi udara pada cold storage agar sesuai dengan kebutuhan, kompressor AC dengan kapasitas 12,7 kW digunakan pada siklus kompresi uap. Performa dari siklus kompresi uap dengan kondisi operasi tersebut ditentukan oleh Coefficient of Performance (COP). Semakin besar nilai COP, maka sistem  semakin efisien. Coefficient of Performance (COP) dari siklus tersebut adalah sebesar 3,84. Kata kunci: Buncis, CLTD, Refrigeran, COP, Siklus kompresi uap Abstract                                                                                                                                                                                                            Snap beans are one of Indonesian acgricultural product exported to overseas. After harvested, snap beans were stored before exported to consumers. The freshness of the snap beans only lasted for one week, therefor special equipment were required to maintain the snap beans freshness. To maintain the freshness, snap beans must be storage in a room with 4-7°C air temperature and 90-95% humidity. In this research, cold storage was designed for 10 tons of snap beans. Cooling Load Temperature Difference method was used to determine the load of the cold storage based on the position of the building. The total cooling load for 10 tons of snap beans were 46,73 kW. The cold storage was using vapor compression cycle with  refrigerant 134a without humidifier . The cycle requires compressor power of 12,7 kW to maintain the condition in the cold storage room. The performance of the cycle was determined from the Coefficient of Performance (COP). The higher value of the COP, the system will be more efficient. The COP of the vapor compression cycle  was 3,84.   Key words: Snap Beans, Export, Refrigerant, Storage, Humidity.


2014 ◽  
Vol 554 ◽  
pp. 464-468 ◽  
Author(s):  
Aiman Dahlan Afiq ◽  
Amirah Haziqah Zulkifli ◽  
Nasution Henry ◽  
Abdul Aziz Azhar ◽  
Mohd Rozi Mohd Perang ◽  
...  

The usage of electric compressor inside conventional non-electric vehicle is a new shifts in current vehicle air conditioning system which currently using belt-driven compressor to operate. The usage of belt-driven compressor causes the compressor speed to vary with engine speed rotation, which we cannot control. The usage of electric compressor to replace the belt-driven compressor makes the speed to be according to the cooling load and thus reducing engine load. The current research activity focuses on the development of electric compressor using direct current (DC) from vehicles battery to replace current belt-driven in vehicle air conditioning system. Performance study is focusing on temperature inside cabin, cooling capacity, compressor power consumption and coefficient of performance (COP). The DC compressor speed is varying at 1800, 2000, 2200, 2400, 2500 and 3000 rpm at internal heat load of 1000W with temperature set-point of 20°C. The system uses On/Off controller and compared to belt-driven compressor. The overall experimental results in better energy efficiency at the expense of lower cooling capacity.


2019 ◽  
Vol 25 (1) ◽  
Author(s):  
MASROOR ALI KHAN ◽  
KHALID AL GHAMDI ◽  
JAZEM A. MEHYOUB ◽  
RAKHSHAN KHAN

The focus of this study is to find the relationship between El Nino and dengue fever cases in the study area.Mosquito density was recorded with the help of light traps and through aspirators collection. Climate data were obtained from National Meteorology and Environment centre. (Year wise El Nino and La Nina data are according to NOAA & Golden Gate Weather Services). Statistical methods were used to establish the correlation coefficient between different factors. A high significant relationship was observed between Relative Humidity and Dengue fever cases, but Aedes abundance had no significant relationship with either Relative humidity and Temperature. Our conclusion is that the El Nino does not affect the dengue transmission and Aedes mosquito abundance in this region, which is supported by earlier works.


Author(s):  
Natalia Popova

The concept of Europeanization has become quite fashionable in EU studies in recent years. It is often used for the analysis of the relations between the EU and non-member states. The aim of the article is to examine the possibilities of its application in explaining the relationship between the EU and Ukraine. The structure of the article is as follows: firstly, the concept of Europeanization is defined considering such two disputable issues as distinguishing among concepts of Europeanization and European integration as well as Europeanization and EU-ization. Next, the evolution of the theoretical research of Europeanization and definition of this concept are analyzed. Two main mechanisms of Europeanization (conditionality and socialization) are examined. The author considers main approaches to the analysis of the "external" Europeanization emphasizing the concept of "external governance". Three groups of factors which influence the effectiveness of Europeanization are briefly analyzed. And finally, the peculiarities of application of the Europeanization concept to the Ukraine-EU relations are outlined. Keywords: EU, Ukraine, Europeanization, EU-ization, ‘external’ Europeanization, conditionality, socialization, concept of ‘external governance’


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2703
Author(s):  
Robert Sekret ◽  
Przemysław Starzec

The paper presents the investigation of a prototype cold accumulator using water–ice latent heat for the cold storage process. The concept of the cold accumulator was based on a 200-L-capacity cylindrical storage tank in which spherical capsules filled with water were placed. Beds of polypropylene capsules with diameters of 80 mm, 70 mm, and 60 mm were used in the tests. The cold accumulator operated with a water–air heat pump. Based on the test results, the following parameters were calculated: the cooling capacity, cooling power, energy efficiency of the cold storage, and energy efficiency ratio (EER) of the accumulator. The obtained measurement results were described with mathematical relationships (allowing for measurement error) using criterial numbers and the developed “Research Stand Factor Number” (RSFN) index. It has been found that, for the prototype cold accumulator under investigation, the maximum values of the cooling capacity (17 kWh or 85.3 kWh per cubic meter of the accumulator), energy efficiency (0.99), and EER (4.8) occur for an RSFN of 144·10−4. The optimal conditions for the operation of the prototype cold accumulator were the closest to laboratory tests conducted for a bed with capsules with a diameter of 70 mm and a mass flow of the water–glycol mixture flowing between the accumulator and the heat pump of 0.084 kg/s. During the tests, no significant problems with the operation of the prototype cold accumulator were found.


Author(s):  
CP Jawahar

This paper presents the energy analysis of a triple effect absorption compression (hybrid) cycle employing ammonia water as working fluid. The performance parameters such as cooling capacity and coefficient of performance of the hybrid cycle is analyzed by varying the temperature of evaporator from −10 °C to 10 °C, absorber and condenser temperatures in first stage from 25 °C to 45 °C, degassing width in both the stages from 0.02 to 0.12 and is compared with the conventional triple effect absorption cycle. The results of the analysis show that the maximum cooling capacity attained in the hybrid cycle is 472.3 kW, at 10 °C evaporator temperature and first stage degassing width of 0.12. The coefficient of performance of the hybrid cycle is about 30 to 65% more than the coefficient of performance of conventional triple effect cycle.


Sign in / Sign up

Export Citation Format

Share Document