A Novel Design Method for Nonuniform Lattice Structures Based on Topology Optimization

2018 ◽  
Vol 140 (9) ◽  
Author(s):  
Yafeng Han ◽  
Wen Feng Lu

Lattice structures are broadly used in lightweight structure designs and multifunctional applications. Especially, with the unprecedented capabilities of additive manufacturing (AM) technologies and computational optimization methods, design of nonuniform lattice structures has recently attracted great research interests. To eliminate constraints of the common “ground structure approaches” (GSAs), a novel topology optimization-based method is proposed in this paper. Particularly, the structural wall thickness in the proposed design method was set as uniform for better manufacturability. As a solution to carry out the optimized material distribution for the lattice structure, geometrical size of each unit cell was set as design variable. The relative density model, which can be obtained from the solid isotropic microstructure with penalization (SIMP)-based topology optimization method, was mapped into a nonuniform lattice structure with different size cells. Finite element analysis (FEA)-based homogenization method was applied to obtain the mechanical properties of these different size gradient unit cells. With similar mechanical properties, elements with different “relative density” were translated into unit cells with different size. Consequently, the common topology optimization result can be mapped into a nonuniform lattice structure. This proposed method was computationally and experimentally validated by two different load-support design cases. Taking advantage of the changeable surface-to-volume ratio through manipulating the cell size, this method was also applied to design a heat sink with optimum heat dissipation efficiency. Most importantly, this design method provides a new perspective to design nonuniform lattice structures with enhanced functionality and manufacturability.

Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1528
Author(s):  
Khaled G. Mostafa ◽  
Guilherme A. Momesso ◽  
Xiuhui Li ◽  
David S. Nobes ◽  
Ahmed J. Qureshi

Additive manufacturing (AM) enables the production of complex structured parts with tailored properties. Instead of manufacturing parts as fully solid, they can be infilled with lattice structures to optimize mechanical, thermal, and other functional properties. A lattice structure is formed by the repetition of a particular unit cell based on a defined pattern. The unit cell’s geometry, relative density, and size dictate the lattice structure’s properties. Where certain domains of the part require denser infill compared to other domains, the functionally graded lattice structure allows for further part optimization. This manuscript consists of two main sections. In the first section, we discussed the dual graded lattice structure (DGLS) generation framework. This framework can grade both the size and the relative density or porosity of standard and custom unit cells simultaneously as a function of the structure spatial coordinates. Popular benchmark parts from different fields were used to test the framework’s efficiency against different unit cell types and grading equations. In the second part, we investigated the effect of lattice structure dual grading on mechanical properties. It was found that combining both relative density and size grading fine-tunes the compressive strength, modulus of elasticity, absorbed energy, and fracture behavior of the lattice structure.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4786
Author(s):  
Xinglong Wang ◽  
Cheng Wang ◽  
Xin Zhou ◽  
Di Wang ◽  
Mingkang Zhang ◽  
...  

Heat-resistant, load-bearing components are common in aircraft, and they have high requirements for lightweight and mechanical performance. Lattice topology optimization can achieve high mechanical properties and obtain lightweight designs. Appropriate lattice selection is crucial when employing the lattice topology optimization method. The mechanical properties of a structure can be optimized by choosing lattice structures suitable for the specific stress environment being endured by the structural components. Metal lattice structures exhibit excellent unidirectional load-bearing performance and the triply periodic minimal surface (TPMS) porous structure can satisfy multi-scale free designs. Both lattice types can provide unique advantages; therefore, we designed three types of metal lattices (body-centered cubic (BCC), BCC with Z-struts (BCCZ), and honeycomb) and three types of TPMS lattices (gyroid, primitive, and I-Wrapped Package (I-WP)) combined with the solid shell. Each was designed with high level of relative density (40%, 50%, 60%, 70%, and 80%), which can be directly used in engineering practice. All test specimens were manufactured by selective laser melting (SLM) technology using Inconel 718 superalloy as the material and underwent static tensile testing. We found that the honeycomb test specimen exhibits the best strength, toughness, and stiffness properties among all structures evaluated, which is especially suitable for the lattice topology optimization design of heat-resistant, unidirectional load-bearing structures within aircraft. Furthermore, we also found an interesting phenomenon that the toughness of the primitive and honeycomb porous test specimens exhibited sudden increases from 70% to 80% and from 50% to 60% relative density, respectively, due to their structural characteristics. According to the range of the exponent value n and the deformation laws of porous structures, we also concluded that a porous structure would exhibit a stretching-dominated deformation behavior when exponent value n < 0.3, a bending-dominated deformation behavior when n > 0.55, and a stretching-bending-dominated deformation behavior when 0.3 < n < 0.55. This study can provide a design basis for selecting an appropriate lattice in lattice topology optimization design.


2018 ◽  
Vol 933 ◽  
pp. 240-245
Author(s):  
Ying Ying Xue ◽  
Xing Fu Wang ◽  
Xin Fu Wang ◽  
Fu Sheng Han

The composites composed of Al-based auxetic lattice structures and silicate rubbers were fabricated by pressure infiltration technology. The compressive behavior and deformation characteristic of the composites were investigated related with the relative densities of the auxetic lattice structures. We found that the composites exhibit a longer plateau region than the non-filled Al-based auxetic lattice structures, and the relative density of the auxetic lattice structures play an important role in the compressive mechanical properties, the higher the relative density, the higher flow stress. It is also noticing that, the composite structures show different deformation and damage mechanism due to the filled incompressible silicate rubber. It is expected that the study may provide useful information for the applications of composite structure.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 97
Author(s):  
Kwang-Min Park ◽  
Kyung-Sung Min ◽  
Young-Sook Roh

Additive manufacturing enables innovative structural design for industrial applications, which allows the fabrication of lattice structures with enhanced mechanical properties, including a high strength-to-relative-density ratio. However, to commercialize lattice structures, it is necessary to define the designability of lattice geometries and characterize the associated mechanical responses, including the compressive strength. The objective of this study was to provide an optimized design process for lattice structures and develop a lattice structure characterization database that can be used to differentiate unit cell topologies and guide the unit cell selection for compression-dominated structures. Linear static finite element analysis (FEA), nonlinear FEA, and experimental tests were performed on 11 types of unit cell-based lattice structures with dimensions of 20 mm × 20 mm × 20 mm. Consequently, under the same relative density conditions, simple cubic, octahedron, truncated cube, and truncated octahedron-based lattice structures with a 3 × 3 × 3 array pattern showed the best axial compressive strength properties. Correlations among the unit cell types, lattice structure topologies, relative densities, unit cell array patterns, and mechanical properties were identified, indicating their influence in describing and predicting the behaviors of lattice structures.


Aerospace ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 207
Author(s):  
Solomon O. Obadimu ◽  
Kyriakos I. Kourousis

Additive manufacturing (AM) technology has undergone an evolutionary process from fabricating test products and prototypes to fabricating end-user products—a major contributing factor to this is the continuing research and development in this area. AM offers the unique opportunity to fabricate complex structures with intricate geometry such as the lattice structures. These structures are made up of struts, unit cells, and nodes, and are being used not only in the aerospace industry, but also in the sports technology industry, owing to their superior mechanical properties and performance. This paper provides a comprehensive review of the mechanical properties and performance of both metallic and non-metallic lattice structures, focusing on compressive behaviour. In particular, optimisation techniques utilised to optimise their mechanical performance are examined, as well the primary factors influencing mechanical properties of lattices, and their failure mechanisms/modes. Important AM limitations regarding lattice structure fabrication are identified from this review, while the paucity of literature regarding material extruded metal-based lattice structures is discussed.


Author(s):  
Vysakh Venugopal ◽  
Matthew McConaha ◽  
Sam Anand

Abstract Structurally optimized lattices have gained significant attention since the commercialization of additive manufacturing (AM). These lattices, which can be categorized as metamaterials, are used in aviation and aerospace industries due to their capacity to perform well under extreme structural, thermal, or acoustic loading conditions. This research focuses on the design of a unit cell of a multi-material lattice structure using topology optimization to be manufactured using multi-material additive manufacturing processes. The algorithm combined with octant symmetry and support elimination filters yields optimized unit cells with overall reduction in effective coefficient of thermal expansion and thermal conductivity with high mechanical strength. Such unit cells can be used in multi-material additive manufacturing to generate lattice structures with optimized structural and thermal properties.


Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2192 ◽  
Author(s):  
Long Bai ◽  
Changyan Yi ◽  
Xiaohong Chen ◽  
Yuanxi Sun ◽  
Junfang Zhang

In order improve the poor mechanical properties of the body-centred cubic (BCC) lattice structure, which suffers from the stress concentration effects at the nodes of the BCC unit cell, a graded-strut design method is proposed to increase the radii corner of the BCC nodes, which can obtain a new graded-strut body-centred cubic (GBCC) unit cell. After the relative density equation and the force model of the structure are obtained, the quasi-static uniaxial compression experiments and finite element analysis (FEA) of GBCC samples and BCC samples are performed. The experimental results show that for the fabricated samples with the same relative density, the GBCC can increase the initial stiffness by at least 38.20%, increase the plastic failure strength by at least 34.12%, compared with the BCC. Coupled experimental and numerical results not only suggest that the GBCC has better mechanical and impact resistance properties than the BCC, but also indicate that as the radii corner increases, the stress concentration effect at the node and the mechanical properties will be improved, which validates the proposed design method for graded-strut unit cells and can provide guidance for the design and future research on ultra-light lattice structures in related fields.


Author(s):  
Mahmoud A. Alzahrani ◽  
Seung-Kyum Choi

With rapid developments and advances in additive manufacturing technology, lattice structures have gained considerable attention. Lattice structures are capable of providing parts with a high strength to weight ratio. Most work done to reduce computational complexity is concerned with determining the optimal size of each strut within the lattice unit-cells but not with the size of the unit-cell itself. The objective of this paper is to develop a method to determine the optimal unit-cell size for homogenous periodic and conformal lattice structures based on the strain energy of a given structure. The method utilizes solid body finite element analysis (FEA) of a solid counter-part with a similar shape as the desired lattice structure. The displacement vector of the lattice structure is then matched to the solid body FEA displacement results to predict the structure’s strain energy. This process significantly reduces the computational costs of determining the optimal size of the unit cell since it eliminates FEA on the actual lattice structure. Furthermore, the method can provide the measurement of relative performances from different types of unit-cells. The developed examples clearly demonstrate how we can determine the optimal size of the unit-cell based on the strain energy. Moreover, the computational cost efficacy is also clearly demonstrated through comparison with the FEA and the proposed method.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2129 ◽  
Author(s):  
Radek Vrána ◽  
Ondřej Červinek ◽  
Pavel Maňas ◽  
Daniel Koutný ◽  
David Paloušek

Selective laser melting (SLM) is an additive technology that allows for the production of precisely designed complex structures for energy absorbing applications from a wide range of metallic materials. Geometrical imperfections of the SLM fabricated lattice structures, which form one of the many thin struts, can lead to a great difference in prediction of their behavior. This article deals with the prediction of lattice structure mechanical properties under dynamic loading using finite element method (FEA) with inclusion of geometrical imperfections of the SLM process. Such properties are necessary to know especially for the application of SLM fabricated lattice structures in automotive or aerospace industries. Four types of specimens from AlSi10Mg alloy powder material were manufactured using SLM for quasi-static mechanical testing and determination of lattice structure mechanical properties for the FEA material model, for optical measurement of geometrical accuracy, and for low-velocity impact testing using the impact tester with a flat indenter. Geometries of struts with elliptical and circular cross-sections were identified and tested using FEA. The results showed that, in the case of elliptical cross-section, a significantly better match was found (2% error in the Fmax) with the low-velocity impact experiments during the whole deformation process compared to the circular cross-section. The FEA numerical model will be used for future testing of geometry changes and its effect on mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document