Multiphase Scouting Control of an Agricultural Field Robot With Reachability Analyses

2019 ◽  
Vol 141 (5) ◽  
Author(s):  
Douglas J. Freese ◽  
Yunjun Xu

Accurate path scouting control of an autonomous agricultural robot is substantially influenced by terrain variability, field patterns, and uncertainties in sensed information. Based on conventional farming techniques, the targeted test crop of strawberries grows in semi-structured environments. Thus in this study, the proposed scouting control architecture comprises of three distinct portions and in each portion different sensors are used. Based on range finder (RF) information, the first region uses a proportional-integral-derivative (PID) controller with logic steps to account for undesirable pop-up events. In the other two portions, vision-based robust controllers are developed, in which a new bound is derived for the focal length uncertainty in vision. Stabilities of the controllers are proven and the reachabilities are analyzed to guarantee that the final state of each portion is within a desired initial region of the next portion controller. The proposed multiphase scouting control is successfully validated for our custom-designed robot in a commercial strawberry farm.

2021 ◽  
Vol 10 (1) ◽  
pp. 516-523
Author(s):  
Wesam M. Jasim ◽  
Yousif I. Al Mashhadany

In this paper, an optimized Fractional Order Proportional, Integral, Derivative based Genetic Algorithm GA-FOPID optimization technique is proposed for glucose level normalization of diabetic patients. The insulin pump with diabetic patient system used in the simulation is the Bergman minimal model, which is used to simulate the overall system. The main purpose is to obtain the optimal controller parameters that regulate the system smoothly to the desired level using GA optimization to find the FOPID parameters. The next step is to obtain the FOPID controller parameters and the traditional PID controller parameters normally. Then, the simulation output results of using the proposed GA-FOPID controller was compared with that of using the normal FOPID and the traditional PID controllers. The comparison shows that all the three controllers can regulate the glucose level but the use of GA-FOPID controller was outperform the use of the other two controllers in terms of speed of normalization and the overshoot value.


Various tuning methods have been proposed for proportional-integral-derivative (PID) controller. A respectively new and simple experimental method for tuning PID controllers named a Good Gain method that was recently proposed by F. Haugen in 2010, this method is not yet recognized among the other known methods for tuning. However, the founder of this methods claims that it can be an alternative to the famous Ziegler-Nichols. In this paper, PID tuning method has been performed experimentally using a real water level system in order to test and validates the Good Gain method. Also other PID tuning methods applied to the same system to compare the results. The results show that the Good Gain method gives an acceptable stability and response comparing to the other industrial PID controller tuning procedures


2021 ◽  
Author(s):  
Abdullah Turan

Abstract In this paper, a simple design method is presented to adjust the parameters of a proportional-integral derivative PID controller to be applied to different systems. In this method, PID controller is designed based on setting the optimal proportional gain according to the desired performance (settling time, overshoot). Determining the other parameters of the PID controller by adjusting the optimum ratio gain (k p ) in a stable loop that minimizes the settling time (t s ) and the error rate of the overshoot (M p ) constitutes the basis of the method. The Routh Rurwitz criterion is used to guarantee stability. The performance of the controller designed with the proposed method has been evaluated on three different transfer functions. With this method, the PID controller works successfully without destroying parameters and without complex mathematical formulation. It has been observed that the proposed method provides better closed loop performance compared to the methods reported recently.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
M. Ablikim ◽  
◽  
M. N. Achasov ◽  
P. Adlarson ◽  
S. Ahmed ◽  
...  

Abstract The decays D → K−π+π+π− and D → K−π+π0 are studied in a sample of quantum-correlated $$ D\overline{D} $$ D D ¯ pairs produced through the process e+e− → ψ(3770) → $$ D\overline{D} $$ D D ¯ , exploiting a data set collected by the BESIII experiment that corresponds to an integrated luminosity of 2.93 fb−1. Here D indicates a quantum superposition of a D0 and a $$ {\overline{D}}^0 $$ D ¯ 0 meson. By reconstructing one neutral charm meson in a signal decay, and the other in the same or a different final state, observables are measured that contain information on the coherence factors and average strong-phase differences of each of the signal modes. These parameters are critical inputs in the measurement of the angle γ of the Unitarity Triangle in B− → DK− decays at the LHCb and Belle II experiments. The coherence factors are determined to be RK3π = $$ {0.52}_{-0.10}^{+0.12} $$ 0.52 − 0.10 + 0.12 and $$ {R}_{K{\pi \pi}^0} $$ R K ππ 0 = 0.78 ± 0.04, with values for the average strong-phase differences that are $$ {\delta}_D^{K3\pi }=\left({167}_{-19}^{+31}\right){}^{\circ} $$ δ D K 3 π = 167 − 19 + 31 ° and $$ {\delta}_D^{K{\pi \pi}^0}=\left({196}_{-15}^{+14}\right){}^{\circ} $$ δ D K ππ 0 = 196 − 15 + 14 ° , where the uncertainties include both statistical and systematic contributions. The analysis is re-performed in four bins of the phase-space of the D → K−π+π+π− to yield results that will allow for a more sensitive measurement of γ with this mode, to which the BESIII inputs will contribute an uncertainty of around 6°.


Author(s):  
Zhonghui Yin ◽  
Jiye Zhang ◽  
Haiying Lu

To solve the urbanization and the economic challenges, a virtual track train (VTT) transportation system has been proposed in China. To evaluate the dynamic behavior of the VTT, a spatial dynamics model has been developed that considers the suspension system and the steering system. Additionally, the model takes into account road irregularity to make simulations more realistic. Based on the newly proposed dynamic model and a designed proportional–integral–derivative (PID) controller, simulation frames of the vehicle and of the VTT are established with the path-tracking performance. The results show that the vehicle and the VTT can run along a desired lane with allowable errors, verifying the proposed model. The vehicle and VTT with the four-wheel steering system show a better dynamic performance than the models with the front-wheel steering system in the curved section. Moreover, the simulation frame can be further applied to dynamics-related assessments, parameter optimization and active suspension control strategy.


2016 ◽  
Vol 859 ◽  
pp. 116-123
Author(s):  
Adrian Mihail Stoica ◽  
Mihaela Raluca Stefanescu

The paper presents a design methodology for the automatic flight control of a launch vehicle. In the proposed approach the controller has a PID (Proportional-Integral-Derivative) structure but its gains are determined solving an H∞ norm minimization problem of the mapping from the atmospheric disturbances to the control amplitude and to the angle of attack of the launcher. The design methodology is illustrated by numerical examples in which both time responses and stability robustness properties of the optimal PID controller are analyzed.


2014 ◽  
Vol 7 (3) ◽  
pp. 65-79
Author(s):  
Ibrahem S. Fatah

In this paper, a Proportional-Integral-Derivative (PID) controller of DC motor is designed by using particle swarm optimization (PSO) strategy for formative optimal PID controller tuning parameters. The proposed approach has superior feature, including easy implementation, stable convergence characteristics and very good computational performances efficiency. The DC Motor Scheduling PID-PSO controller is modeled in MATLAB environment. Comparing with conventional PID controller using Genetic Algorithm, the planned method is more proficient in improving the speed loop response stability, the steady state error is reduced, the rising time is perfected and the change of the required input do not affect the performances of driving motor with no overtaking.


2019 ◽  
Vol 8 (2S8) ◽  
pp. 1448-1454

The statistical analyses in the past showing the important properties of the electrohydraulic actuator (EHA) system, especially in the growth of the world economy. Dealing with the existing drawback in the EHA system, various types of control schemes have been introduced in the past. In this paper, to produce a more insightful view of the performance and the capabilities of the controller, three different types of controllers have been designed and compared. The favourite controller in the industry field, which is the proportional-integral-derivative (PID) controller will be first introduced. Follow by the improved PID controller, named Fractional Order (FO-PID) controller will be designed. Then, the prominent robust controller in the control field, called sliding mode controller (SMC) will be established. Instead of obtaining the controller’s parameters without any appropriate technique, the well-known tuning technique in computer science, named particle swarm optimization (PSO) will be utilized. Referring to the performances produced by these controllers, it can be concluded that the SMC is capable to generate most desired control performance that produced the highest accuracy with the smallest error in the analyses.


The classical proportional integral derivative (PID) controllers are still use in various applications in industry. Magnetic levitation (ML) systems are rigidly nonlinear and sometimes unstable systems. Due to inbuilt nonlinearities of ML systems, tracking of position of ML Systems is still difficult. For the tracking purpose of position, PID controller parameters are found by choosing Cuckoo Search Algorithm (CSA) of optimization. The ranges of parameters are customized by z-n method of parameters. Simulation results show the tracking of position of ML systems using conventional and optimized parameters obtained with the CSA based controller.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Grendi Hendrastomo *

Shifting agricultural era to the era of industrialization left many problems, especially in the agricultural sector. Populist policies have on one hand brought the country many industrial investments that force economic growth, but on the other hand reduced the partisanship of country in agricultural sector. Agriculture as the basis for mass production of most Indonesian society has became casualties as part of the green revolution that is full of developing countries‘s propaganda which brings benefit and lead to dependency on developing countries. The downturn actors of agricultural field increased in line with growth of food-estate program to attract foreign investors to explore the agro sector. This article discusses on a critical review of agriculture in Indonesia’s slump that began with the green revolution with their panca usaha tani, starting from the decline of the agricultural sector, static industrial situation until the solutions that might be applied to enhance the economic growth and social dynamics of Indonesia.   Keywords: Industrialisation, Marginalization of Agriculture, Green Revolution


Sign in / Sign up

Export Citation Format

Share Document