Boriding Temperature Effect on Micro-Abrasion Wear Resistance of Borided Tool Steel

2019 ◽  
Vol 141 (12) ◽  
Author(s):  
Azmi Erdogan

Abstract Microstructure, hardness, and micro-abrasion behavior of borided H13 tool steel (borided at 1073, 1173, and 1273 K with nanoboron powder for 6 h) were studied. A single-phase boride layer was observed on the borided sample at 1073 K, while a double-phase boride layer was observed on the borided samples at high temperatures. FeB–Fe2B phases as well as CrB–MnB phases were determined in the XRD analysis of the samples. The hardness of the borided samples increased up to values above 2000 HV0.1. The thicker boride layer obtained due to the boriding process at high temperatures provided the retention of high hardness in the inner regions. The highest micro-abrasion resistance was obtained with the borided sample at 1273 K. Depending on the increasing load, volume losses increased on all samples under all conditions. Higher wear losses were determined in the tests performed with high-dimensional SiC. In the tests conducted with SiC F800, the dominant wear mechanism was micro-grooving wear mechanism, while in SiC F1200 tests the wear mechanism was micro-rolling and micro-scratching mechanisms. The abrasion resistance of the untreated sample was attributed to the abrasive particles sinking onto the surface.

Alloy Digest ◽  
1966 ◽  
Vol 15 (8) ◽  

Abstract Cyclops 62 is an air-hardening tool steel with exceptional resistance to softening when tempering. It is recommended for cold work applications where high hardness after high tempering temperatures is a requirement. This datasheet provides information on composition, physical properties, hardness, and tensile properties as well as fracture toughness. It also includes information on forming, heat treating, machining, and joining. Filing Code: TS-181. Producer or source: Cyclops Corporation.


Alloy Digest ◽  
2006 ◽  
Vol 55 (1) ◽  

Abstract HS-29XL is a modification of the M2 tool steel composition with increased carbon and correspondingly the addition of alloy carbides, increased hardness, and abrasion resistance. This datasheet provides information on composition, physical properties, hardness, and elasticity. It also includes information on heat treating and machining. Filing Code: TS-625. Producer or source: Timken Latrobe Steel.


Alloy Digest ◽  
1990 ◽  
Vol 39 (8) ◽  

Abstract LESCOT-15 PM is a special purpose tungsten type high-speed tool steel containing cobalt for good retention of hot hardness and high carbon and vanadium for enhanced abrasion resistance. It is produced by powder metallurgy. This datasheet provides information on composition, physical properties, microstructure, hardness, and elasticity. It also includes information on heat treating and machining. Filing Code: TS-498. Producer or source: Latrobe Steel Company. Originally published August 1989, revised August 1990.


2021 ◽  
Author(s):  
Denis R Salikhyanov ◽  
Ivan Kamantsev

Abstract The present work is devoted to the study of deformability of high-strength and hard-to-deform materials. Today the most promising technology for their forming is a rolling in a ductile shell also known as sandwich rolling. Despite the fact that the use of such technological shells allows to effectively reduce the rolling forces and soften the stress state, they have not got wide application in manufacturing practice due to the accompanying disadvantages. On the basis of finite element (FE) simulation, we carried out an all-around analysis of the effect of shell material on process parameters of method: rolling force, total reduction of hard-to-deform material, deformation inhomogeneity and thickness variation of rolled sheet, stress state scheme. Analysis of computer models allowed us to highlight the main reason for the low efficiency of the known method and propose a new design of technological shells. Preliminary FE-simulation of the rolling process of hard-to-deform material in the new technological shells showed an improvement in process parameters and method efficiency. Approbation was carried out via rolling U12 high-carbon tool steel (Russian analogue of DIN C110W2 tool steel), which has low plasticity and high hardness, on the rolling mill Duo 250 under laboratory conditions. Evaluation according to technological criteria – reducing the rolling force, increase of the total reduction and the deformation uniformity of hard-to-deform material, improvement of its deformability – showed the prospects of using proposed technological shells in manufacturing practice.


Coatings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1207
Author(s):  
Fatih Hayat ◽  
Cihangir Tevfik Sezgin

In this study, a novel high-manganese steel (HMS) was borided at 850, 900 and 950 °C for 2, 4, and 6 h by the pack boriding process. Contrary to previous literature, borided HMS uncommonly exhibited saw-tooth morphology like low alloy steels, and manganese enhanced the boron diffusion. Another striking analysis is that the “egg-shell effect” did not occur. The present study demonstrated the silicon-rich zone for the first time in the literature by EDX mapping. Moreover, the formation mechanism of silicon-rich zones was explained and termed as “compact transfer of silicones (CTS)”. XRD analysis showed the existence of FeB, Fe2B, MnB and SiC phases. The boriding time and temperature increased the thickness of the boride layer from 31.41 μm to 117.65 µm. The hardness of the borided layer ranged from 1120 to 1915 HV0.05. The activation energy of borided HMS was found to be a very low result compared to high alloy steel investigated in the literature. The Daimler-Benz Rockwell-C adhesion test showed that adhesions of borided HMS surfaces are sufficient. The dry sliding wear tests showed that boriding treatment increased the wear resistance of untreated HMS by 5 times. The present study revealed that the boriding process extended the service life of HMS components.


Alloy Digest ◽  
2021 ◽  
Vol 70 (9) ◽  

Abstract Crucible CPM Rex 54 HS is a cobalt-bearing high speed tool steel that is produced by the proprietary Crucible Particle Metallurgy (CPM) process. It combines the wear properties of the popular high vanadium M4 grade with the red hardness of the cobalt-bearing M35/Crucible CPM Rex 45 HS grades. Crucible CPM Rex 54 HS may be used as an upgrade for improved red hardness over M3 or M4 without giving up the abrasion resistance, or as an upgrade for improved wear resistance over M35 or Crucible CPM Rex 45 HS without giving up the red hardness. This datasheet provides information on composition, physical properties, microstructure, hardness, and elasticity. It also includes information on wear resistance as well as heat treating and surface treatment. Filing Code: TS-818. Producer or source: Crucible Industries LLC.


Author(s):  
Yavuz Kaplan ◽  
Mehmet Gülsün ◽  
Sinan Aksöz

Abstract In this study, powder metallurgy was applied in a furnace atmosphere to form titanium boride layers on a commercially pure Ti surface. Experiments were carried out using the solid-state boriding method at 900 °C and 1000°C for 12 h and 24 h. Samples were produced by pressing the commercially pure Ti powders under 870 MPa. The sintering process required by the powder metallurgy method was carried out simultaneously with the boriding process. Thus, the sintering and boriding were performed in one stage. The formation of the boride layer was investigated by field emission scanning electron microscopy, optical-light microscopy, X-ray diffraction, and elemental dispersion spectrometry analyses. In addition, microhardness measurements were performed to examine the effect of the boriding process on hardness. The Vickers microhardness of the boronized surface reached 1773 HV, which was much higher than the 150 HV hardness of the commercially pure Ti substrate. The X-ray diffraction analysis showed that the boriding process had enabled the formation of TiB and TiB2 on the powder metallurgy Ti substrate surface. Consequently, the production of Ti via powder metallurgy is a potentially cost-effective alternative to the conventional method, and the boriding process supplies TiB and TiB2 that provide super-high hardness and excellent wear and corrosion resistance.


2018 ◽  
Vol 7 (3.4) ◽  
pp. 73
Author(s):  
Abhinav . ◽  
N Krishnamurthy ◽  
Ranjana Jain

A composite mixture of Metco 105 SFP, 99.9% Al2O3 and Metco 201 NS, ZrO2.5CaO were blended in the pursuit of high hardness and improved wear resistance characteristics for tribological applications. In this context a composite mixture of alumina and calcia stabilized zirconia in 50:50 by wt. % proportion was developed, and applied over Al-6061 substrates. Atmospheric plasma spray coating technique was used to develop the coating systems. The ASTM G132 standard, a pin-on-disk tribometer was used to determine the specific wear rate at different normal loads of 5 N, 10 N and 15 N. Experimental results revealed that the top coat primarily subjected to sliding and localized abrasion and also confirmed with SEM micrograph. Sliding has mainly occurs in the plane of <111>, <200>, <220>, <311>, <222> found in the XRD analysis. Irrespective of the applied normal loads the coefficient of friction doesn’t influences much in the abrasive wear studies. However, wear mechanism was found to primarily dependent on the phases and on the crystallographic structure of the material used.  


2020 ◽  
Vol 1010 ◽  
pp. 250-255
Author(s):  
Nik Akmar Rejab ◽  
Nurul Khairunnisa Su ◽  
Wan Fahmin Faiz Wan Ali ◽  
Mohd Fadzil Ain ◽  
Zainal Arifin Ahmad ◽  
...  

Zirconia toughened alumina (ZTA) has shown a great effect in the cutting tool application due to its high hardness and comparable fracture toughness. However, the capability of the materials to be applied in as the dielectric resonator antenna (DRA) is not being discussed in detail. In this study, an attempt is made to further explore the potential of ZTA to be applied in DRA. Various related characterization techniques were applied that is subjected to DRA properties. The addition of CeO2 (0 wt.% to 15 wt.%) on ZTA has been pressed into pellets shape and sintered at 1600 °C for 2 hours under pressureless conditions. Based on the XRD analysis, only corundum and yttria doped zirconia phases were present. Shift in position of the zirconia peaks was observed due to an existence of Ce2Zr3O10 phase. For the DRA measurement, ZTA with 10 wt.% CeO2 addition have resonated at 6.76 GHz which is suitable for X-band applications. Meanwhile the radiation pattern indicated the omnidirectional characteristic, which suggested that the signal could be received by this dielectric antenna in various positions. Therefore, ZTA- 10 wt.% CeO2 have high potential to be used as DRA that operates X-band frequency range applications.


2015 ◽  
Vol 1095 ◽  
pp. 655-661 ◽  
Author(s):  
Tong Liu ◽  
Yue Guang Yu ◽  
Jie Shen ◽  
Jian Ming Liu ◽  
Qiu Yuan Lu

To improve gas turbine performance, it is essential to decrease back flow gases in the high-temperature combustion region of turbo machine by reducing the shroud/rotor gap. An abradable seal coating will function effectively. Therefore, it is significant to identify and characterize the main wear mechanisms occurring on turbo machinery seals. A high temperature and speed test rig has been developed by BGRIMM for testing the AlSi–hBN abradable seal coating and Ti-6Al-4V dummy blade. Impact velocities between 150 and 300m·s-1 and incursion rates between 5.0 and 480 μm·s-1 have been applied. It was found that incursion rate has a greater impact on the wear mechanism of the AlSi–hBN coating, with tests at low incursion rate showing a obvious grooving and little micro-rupture, whereas tests at high incursion rate showing significant cutting and adhesion. The present work also shown that tests at low incursion rate related to a higher IDR, which means that blade suffered a serious wear. The investigation together with SEM and XRD analysis on the coating revealed both wear and adhesion occurred at the end of the test.


Sign in / Sign up

Export Citation Format

Share Document