Direct Current/Alternating Current Magnetohydrodynamic Micropump of a Hybrid Nanofluid Through a Vertical Annulus With Heat Transfer

Author(s):  
Y. A. S. El-Masry ◽  
Y. Abd Elmaboud ◽  
M. A. Abdel-Sattar

Abstract Gold nanoparticles (AuNPs) are increasingly being widely used in several biomedical applications for their compatibility of synthesis and less toxicity. The mixture of gold and titanium oxide nanoparticles is suspended in water to make a new class of nanofluid, which is called a hybrid nanofluid. The problem of direct current (DC)/alternating current (AC) magnetohydrodynamic (MHD) micropump of the hybrid nanofluid through a porous medium in the gap between vertical coaxial microtubes with heat transfer has been discussed. The mathematical model is established and then solved with the help of the Laplace transform. The inversion of the transformed functions is calculated numerically. The velocity, the flowrate, the pressure, and the heat transfer are discussed graphically. The higher concentration of the mixture of particles enhances the stream so that the required pressure is small. Moreover, it is found that the variation of the Nusselt number is noticeable by increasing the concentrations of nanoparticles, but this variation vanishes near the outer tube.

Author(s):  
M. A. EL KOT ◽  
Y. ABD ELMABOUD

Gold nanoparticles (AuNPs) are now widely used because of their synthesis compatibility and less toxicity in several biomedical applications such as cancer treatment. From the fluid mechanics point of view, we examine the behavior of a mixture of gold and Titanium Oxide nanoparticles, which suspended in the blood as a base fluid in the diseased coronary artery. The main goal of this paper is to examine and shed light on the hybrid nanofluid flows through a vertical diseased artery in the presence of the catheter tube with heat transfer. The mathematical model is established and then solved with the Laplace and the finite Hankel transforms. The inverse of the transformed functions has been calculated numerically. The velocity, the pressure, the impedance and the heat transfer are discussed graphically. It is noteworthy to mention that the mixture of the nanoparticles dispersed in the blood needs high pressure to push it. The impedance of blood is proportional to the overall volume concentration of the nanoparticles and Reynolds number.


Author(s):  
Cleyton S. Stampa ◽  
Angela O. Nieckele ◽  
Sergio L. Braga

A parametric numerical investigation regarding the ice layer growth outside a vertical tube is investigated. It encompasses heat transfer and removal of energy, applicable to indirect, area-constrained, ice-on-pipe storage tanks. The study is carried out in a vertical annulus, with the inner vertical wall representing one of the tubes packed into a typical storage tank. Further, the outer vertical wall determines the maximum border for the ice layer growth under the conditions established in the present study, corresponding to a full charging process in such devices. Our task is to provide helpful qualitative results for the investigation of ice storage tank heat transfer performance, considering changes in the following parameters: aspect ratio, radius ratio, Grashof and Stefan numbers. For the mathematical model adopted to simulate transient natural convection of water with phase-change (solidification), it was utilized a model based on the finite volume method to solve the set of coupled conservation equations of mass, momentum and energy.


2018 ◽  
Vol 11 (4) ◽  
pp. 28-34
Author(s):  
Adnan Mohammed Hussein

Study of heat transfer augmentation with hybrid nanofluid represents a new class of heat transfer augmentation. The CFD model by using commercial software depending on finite volume technique and adopting SIMPLE  algorithm is performed. Mixture of Aluminum Nitride (AlN) and alumina (Al2O3)  nanoparticles into water as a basefluid is  classified as a new class of hybrid nanofluids  that can augment heat transfer. The nanofluid  volume fraction and Reynolds number are in  the range of (1% to 4%) and (5000 to 17000) respectively. The size diameter of  nanoparticles and heat flux around a horizontal straight tube are fixed at 30 nm and 5000 w/m2 respectively. The numerical solution has been  successfully validated by using an  experimental data available in the literature. Results show that combination of AlN - Al2O3 nanoparticles into water basefluid tends to  augment significant heat transfer performance.


2012 ◽  
Vol 9 (1) ◽  
pp. 131-135
Author(s):  
M.A. Pakhomov

The paper presents the results of modeling the dynamics of flow, friction and heat transfer in a descending gas-liquid flow in the pipe. The mathematical model is based on the use of the Eulerian description for both phases. The effect of a change in the degree of dispersion of the gas phase at the input, flow rate, initial liquid temperature and its friction and heat transfer rate in a two-phase flow. Addition of the gas phase causes an increase in heat transfer and friction on the wall, and these effects become more noticeable with increasing gas content and bubble diameter.


2019 ◽  
Vol 26 (30) ◽  
pp. 5609-5624
Author(s):  
Dijana Saftić ◽  
Željka Ban ◽  
Josipa Matić ◽  
Lidija-Marija Tumirv ◽  
Ivo Piantanida

: Among the most intensively studied classes of small molecules (molecular weight < 650) in biomedical research are small molecules that non-covalently bind to DNA/RNA, and another intensively studied class is nucleobase derivatives. Both classes have been intensively elaborated in many books and reviews. However, conjugates consisting of DNA/RNA binder covalently linked to nucleobase are much less studied and have not been reviewed in the last two decades. Therefore, this review summarized reports on the design of classical DNA/RNA binder – nucleobase conjugates, as well as data about their interactions with various DNA or RNA targets, and even in some cases protein targets are involved. According to these data, the most important structural aspects of selective or even specific recognition between small molecule and target are proposed, and where possible related biochemical and biomedical aspects were discussed. The general conclusion is that this, rather new class of molecules showed an amazing set of recognition tools for numerous DNA or RNA targets in the last two decades, as well as few intriguing in vitro and in vivo selectivities. Several lead research lines show promising advancements toward either novel, highly selective markers or bioactive, potentially druggable molecules.


Fluids ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 138
Author(s):  
Ali Rehman ◽  
Zabidin Salleh

This paper analyses the two-dimensional unsteady and incompressible flow of a non-Newtonian hybrid nanofluid over a stretching surface. The nanofluid formulated in the present study is TiO2 + Ag + blood, and TiO2 + blood, where in this combination TiO2 + blood is the base fluid and TiO2 + Ag + blood represents the hybrid nanofluid. The aim of the present research work is to improve the heat transfer ratio because the heat transfer ratio of the hybrid nanofluid is higher than that of the base fluid. The novelty of the recent work is the approximate analytical analysis of the magnetohydrodynamics mixed non-Newtonian hybrid nanofluid over a stretching surface. This type of combination, where TiO2+blood is the base fluid and TiO2 + Ag + blood is the hybrid nanofluid, is studied for the first time in the literature. The fundamental partial differential equations are transformed to a set of nonlinear ordinary differential equations with the guide of some appropriate similarity transformations. The analytical approximate method, namely the optimal homotopy analysis method (OHAM), is used for the approximate analytical solution. The convergence of the OHAM for particular problems is also discussed. The impact of the magnetic parameter, dynamic viscosity parameter, stretching surface parameter and Prandtl number is interpreted through graphs. The skin friction coefficient and Nusselt number are explained in table form. The present work is found to be in very good agreement with those published earlier.


2021 ◽  
Vol 11 (10) ◽  
pp. 4683
Author(s):  
Areum Lee ◽  
Chinnasamy Veerakumar ◽  
Honghyun Cho

This paper discusses the forced convective heat transfer characteristics of water–ethylene glycol (EG)-based Fe3O4 nanofluid and Fe3O4–MWCNT hybrid nanofluid under the effect of a magnetic field. The results indicated that the convective heat transfer coefficient of magnetic nanofluids increased with an increase in the strength of the magnetic field. When the magnetic field strength was varied from 0 to 750 G, the maximum convective heat transfer coefficients were observed for the 0.2 wt% Fe3O4 and 0.1 wt% Fe3O4–MWNCT nanofluids, and the improvements were approximately 2.78% and 3.23%, respectively. The average pressure drops for 0.2 wt% Fe3O4 and 0.2 wt% Fe3O4–MWNCT nanofluids increased by about 4.73% and 5.23%, respectively. Owing to the extensive aggregation of nanoparticles by the external magnetic field, the heat transfer coefficient of the 0.1 wt% Fe3O4–MWNCT hybrid nanofluid was 5% higher than that of the 0.2 wt% Fe3O4 nanofluid. Therefore, the convective heat transfer can be enhanced by the dispersion stability of the nanoparticles and optimization of the magnetic field strength.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 887
Author(s):  
Nabeela Parveen ◽  
Muhammad Awais ◽  
Saeed Ehsan Awan ◽  
Wasim Ullah Khan ◽  
Yigang He ◽  
...  

This research concerns the heat transfer and entropy generation analysis in the MHD axisymmetric flow of Al2O3-Cu/H2O hybrid nanofluid. The magnetic induction effect is considered for large magnetic Reynolds number. The influences of thermal radiations, viscous dissipation and convective temperature conditions over flow are studied. The problem is modeled using boundary layer theory, Maxwell’s equations and Fourier’s conduction law along with defined physical factors. Similarity transformations are utilized for model simplification which is analytically solved with the homotopy analysis method. The h-curves upto 20th order for solutions establishes the stability and convergence of the adopted computational method. Rheological impacts of involved parameters on flow variables and entropy generation number are demonstrated via graphs and tables. The study reveals that entropy in system of hybrid nanofluid affected by magnetic induction declines for [...]


Sign in / Sign up

Export Citation Format

Share Document