Investigation of the optimum surface roughness of AISI 5120 steel by using a running-in attractor

2020 ◽  
pp. 1-18
Author(s):  
Ding Cong ◽  
Guodong Sun ◽  
Zhen-yu Zhou ◽  
Zhong-yu Piao

Abstract To investigate the influence of surface roughnesses on the dynamic characteristics of AISI 5120 steel in sliding friction process, a suite of running-in experiments are performed on a pin-on-disk tribometer. The running-in attractor is used to analyze the high-dimensional features of a friction system under different surface roughnesses. The experimental results show that the roughnesses of different original surfaces evolve to the same value in stable wear stage. The pin-on-disk friction system has a chaotic nature and exists a running-in attractor. The original surface of a disk of Ra=0.953 µm is the most conducive to shorten the running-in duration, reduce the friction coefficient value, and improve the stability of the friction system. This roughness value is termed as the optimum surface roughness. It is an ideal working surface for the friction pair in the running-in design.

2021 ◽  
Author(s):  
Jian Xu ◽  
Zhen Yang ◽  
Qiang Li ◽  
Zhongming Li

Abstract The temperature rise in the contact area of the sliding friction pair is an important factor that causes the sliding friction pairs to adhere and affect the movement, and the temperature of the sliding friction pair is affected by many factors. The influential trend of these factors on the temperature is analyzed by using the finite element software, the bolt and guide rail of a Gatling weapon is simulated under the condition of considering the surface roughness and bionics. The results demonstrate that the stress of the result decreases a lot when the bolt is bionic, which is 41.1% lower than the normal condition. However, the displacement increases slightly, only 0.0016mm. Bionics has more benefits than roughness in reducing stress. In the thermal situation analysis of the 10000 firing rate, the combination which comes from the general guide rail and the bionics bolt is 168.130, but the combination which comes from the general guide rail and general bolt is 86.2580. This also explains why modern Gatling weapons do not use the bionics structure, because, with the friction, its temperature is high. For continuous firing weapons, too high a temperature is a problem. If the firing rate is lower, a bionics structure can be used.


2011 ◽  
Vol 490 ◽  
pp. 288-295
Author(s):  
Jerzy Nachimowicz ◽  
Robert Korbut

The article analyses the process of friction in the needle bearing as the function of the alterations of geometrical parameters, namely the diameter of the shaft – D, the needle – d and the bearing clearance. The change in the relation between the diameters D and d results in the change of the contact area of the friction pair; in the case of two shafts with parallel axes (the needle of the bearing and the shaft pin) the contact area, if compared with the analogical process in the ball bearing, alters significantly and leads to resistance in motion. There are two types of friction in the needle bearing: the rolling friction and the sliding friction; the analysis of the movement of the bearing elements enabled the estimation of the extent to which the sliding friction matters in the overall balance of motion resistance. The article also defines the type of wear as the function of initial clearance.


2006 ◽  
Vol 34 (4) ◽  
pp. 237-255 ◽  
Author(s):  
M. Kuwajima ◽  
M. Koishi ◽  
J. Sugimura

Abstract This paper describes experimental and analytical studies of the dependence of tire friction on the surface roughness of pavement. Abrasive papers were adopted as representative of the microscopic surface roughness of pavement surfaces. The rolling∕sliding friction of tire tread rubber against these abrasive papers were measured at low slip velocities. Experimental results indicated that rolling∕sliding frictional characteristics depended on the surface roughness. In order to examine the interfacial phenomena between rubber and the abrasive papers, real contact length, partial slip, and apparent friction coefficient under vertical load and tangential force were analyzed with two-dimensional explicit finite element analysis in which slip-velocity-dependent frictional coefficients were considered. Finite element method results indicated that the sum of real contact area and local partial slip were larger for finer surfaces under the same normal and tangential forces. In addition, the velocity-dependent friction enhanced local slip, where the dependence of local slip on surface roughness was pronounced. It proved that rolling∕sliding friction at low slip ratio was affected by local frictional behavior at microslip regions at asperity contacts.


2006 ◽  
Vol 113 ◽  
pp. 334-338
Author(s):  
Z. Dreija ◽  
O. Liniņš ◽  
Fr. Sudnieks ◽  
N. Mozga

The present work deals with the computation of surface stresses and deformation in the presence of friction. The evaluation of the elastic-plastic contact is analyzed revealing three distinct stages that range from fully elastic through elastic-plastic to fully plastic contact interface. Several factors of sliding friction model are discussed: surface roughness, mechanical properties and contact load and areas that have strong effect on the friction force. The critical interference that marks the transition from elastic to elastic- plastic and plastic deformation is found out and its connection with plasticity index. A finite element program for determination contact analysis of the assembled details and due to details of deformation that arose a normal and tangencial stress is used.


Author(s):  
C. J. Hooke

In heavily loaded, piezoviscous contacts the surface roughness tends to be flattened inside the conjunction by any relative sliding of the surfaces. However, before it is flattened, the roughness affects the inlet to the contact, producing clearance variations there. These variations are then convected through the contact, at the entrainment velocity, producing a clearance distribution that differs from the original surface. The present paper explores this behaviour and establishes how the amplitude of the convected clearance varies with wavelength and operating conditions. It is shown that the primary influence is the ratio of the wavelength to the inlet length of the conjunction. Where this ratio is large, the roughness is smoothed and there is little variation in clearance under the conjunction. Where the ratio is small, significant variations in clearance may occur but the precise amplitude and phasing depend on the ratio of slide to roll velocities and on the value of a piezoviscous parameter, c. The numerical results agree closely with existing solutions but extend these to cover the full range of operating conditions.


2001 ◽  
Vol 697 ◽  
Author(s):  
Jose L. Endrino ◽  
Jose J. Nainaparampil ◽  
James E. Krzanowski

AbstractTiC/C/Ag coatings were deposited by magnetron sputtering pulsed laser deposition (MSPLD) combining sputtering from a custom made Ti-Ag (60:40) target with the ablation of carbon. Energy disperse spectroscopy (EDS) was used to determine the elemental composition, and x-ray diffraction (XRD) and cross-sectional scanning electron microscopy (XSEM) to examine the structure of the films. Hardness and reduced modulus measurements were acquired using a nanoindentation technique. The pin-on-disk friction test was used to study the friction behavior of the deposited samples in high vacuum and ambient conditions. Variations in the laser energy and the power of the sputtering gun yielded a set of samples with carbon content that ranged from 15.0 to 95.6 percent. The hardest samples with the highest reduced modulus were those with a moderate carbon content and that were shown to form a titanium carbide phase. Tribological results indicated that there is an optimum composition of a TiC/C/Ag coating (~25 at.% carbon) for which it can be reversible and provide lubrication in both ambient and vacuum.


2011 ◽  
Vol 291-294 ◽  
pp. 34-40
Author(s):  
Hua Tang ◽  
Wen Jing Li ◽  
Chang Sheng Li

The YBa2Cu3Ox/Ag and Bi2Sr2CaCu2Ox/Ag self-lubricating composites were prepared using powder metallurgic method. The crystal structure and morphology of the as-synthesized samples were characterized by XRD and SEM. The YBa2Cu3Ox/Ag and Bi2Sr2CaCu2Ox/Ag self-lubricating composites were found to compose of superconductor phase and Ag phase. The tribological properties from ultra-low temperature to room temperature of the composites were studied by pin-on-disk friction test. It was found that the friction coefficients of pure YBa2Cu3Ox(YBCO) and Bi2Sr2CaCu2Ox(BSCCO) were both dropped abruptly when the temperature cooled below the superconducting transition temperature. At room temperature, the friction coefficient of pure YBa2Cu3Oxis 0.68~0.95, when mixing 15wt% Ag, the friction coefficient of the sample decreased to the lowest value 0.11. The friction coefficient of pure Bi2Sr2CaCu2Ox is 0.15~0.17, When Ag content reach 10wt%, the coefficient was lowest (average value is 0.13). The addition of appropriate amount of Ag obviously improve the tribological property of YBCO, while only slightly meliorate that of BSCO. On the other hand, the YBCO/Ag composites exhibit better tribological properties than BSCCO/Ag composites at higher load under the same experimental condition.


2017 ◽  
Vol 24 (12) ◽  
pp. 2642-2655 ◽  
Author(s):  
Lida Zhu ◽  
Baoguang Liu ◽  
Hongyu Chen

Cutting stability is the prerequisite to ensure efficient and high-precision machining, resulting in poor surface quality and damaged tool, which is the basis for the optimization of process parameters and improvement of processing efficiency. Aiming at process damping caused by interference between a tool flank face and a machined surface of part, the dynamic model and critical condition of stability is proposed in the paper. The frequency method is applied to solve the stability of the cutting chatter, and the correctness of the model is validated by experiments. Moreover, through orthogonal experiments, regression analysis methodology are adopted to establish a prediction model of surface roughness and finally combined with the study findings on milling stability based on process damping and surface roughness, achieved optimization of the milling parameters by genetic optimization algorithm. This conclusion provides a theoretical foundation and reference for the milling mechanism research.


Sign in / Sign up

Export Citation Format

Share Document