scholarly journals Optimal Estimation of the Roughness Coefficient and Friction Factor of a Pipeline

2021 ◽  
Vol 143 (5) ◽  
Author(s):  
Ildeberto Santos-Ruiz ◽  
Francisco-Ronay López-Estrada ◽  
Vicenç Puig ◽  
Lizeth Torres ◽  
Guillermo Valencia-Palomo ◽  
...  

Abstract This work addresses the estimation of two interrelated parameters of the fluid flow in pipes. First, a numerical and experimental evaluation of some proposed methods to compute the friction factor in turbulent regime is presented. Special attention is given to an explicit solution obtained through the Lambert W-function. Subsequently, a method to estimate the roughness coefficient using nonlinear optimization techniques is proposed, which then allows determining the friction factor from it. Numerical tests were performed for a wide range of operating points of a pipeline. In order to validate the proposed approach, experimental analysis was carried out on a pipeline pilot-plant. The results show the applicability and effectiveness of the proposed method.

2015 ◽  
Vol 26 (04) ◽  
pp. 1550047 ◽  
Author(s):  
Behrouz Takabi ◽  
Hossein Shokouhmand

In this paper, forced convection of a turbulent flow of pure water, Al 2 O 3/water nanofluid and Al 2 O 3– Cu /water hybrid nanofluid (a new advanced nanofluid composited of Cu and Al 2 O 3 nanoparticles) through a uniform heated circular tube is numerically analyzed. This paper examines the effects of these three fluids as the working fluids, a wide range of Reynolds number (10 000 ≤ Re ≤ 10 0000) and also the volume concentration (0% ≤ ϕ ≤ 2%) on heat transfer and hydrodynamic performance. The finite volume discretization method is employed to solve the set of the governing equations. The results indicate that employing hybrid nanofluid improves the heat transfer rate with respect to pure water and nanofluid, yet it reveals an adverse effect on friction factor and appears severely outweighed by pressure drop penalty. However, the average increase of the average Nusselt number (when compared to pure water) in Al 2 O 3– Cu /water hybrid nanofluid is 32.07% and the amount for the average increase of friction factor would be 13.76%.


2018 ◽  
Vol 853 ◽  
pp. 488-514 ◽  
Author(s):  
Marco E. Rosti ◽  
Daulet Izbassarov ◽  
Outi Tammisola ◽  
Sarah Hormozi ◽  
Luca Brandt

We present numerical simulations of laminar and turbulent channel flow of an elastoviscoplastic fluid. The non-Newtonian flow is simulated by solving the full incompressible Navier–Stokes equations coupled with the evolution equation for the elastoviscoplastic stress tensor. The laminar simulations are carried out for a wide range of Reynolds numbers, Bingham numbers and ratios of the fluid and total viscosity, while the turbulent flow simulations are performed at a fixed bulk Reynolds number equal to 2800 and weak elasticity. We show that in the laminar flow regime the friction factor increases monotonically with the Bingham number (yield stress) and decreases with the viscosity ratio, while in the turbulent regime the friction factor is almost independent of the viscosity ratio and decreases with the Bingham number, until the flow eventually returns to a fully laminar condition for large enough yield stresses. Three main regimes are found in the turbulent case, depending on the Bingham number: for low values, the friction Reynolds number and the turbulent flow statistics only slightly differ from those of a Newtonian fluid; for intermediate values of the Bingham number, the fluctuations increase and the inertial equilibrium range is lost. Finally, for higher values the flow completely laminarizes. These different behaviours are associated with a progressive increases of the volume where the fluid is not yielded, growing from the centreline towards the walls as the Bingham number increases. The unyielded region interacts with the near-wall structures, forming preferentially above the high-speed streaks. In particular, the near-wall streaks and the associated quasi-streamwise vortices are strongly enhanced in an highly elastoviscoplastic fluid and the flow becomes more correlated in the streamwise direction.


2012 ◽  
Vol 696 ◽  
pp. 228-262 ◽  
Author(s):  
A. Kourmatzis ◽  
J. S. Shrimpton

AbstractThe fundamental mechanisms responsible for the creation of electrohydrodynamically driven roll structures in free electroconvection between two plates are analysed with reference to traditional Rayleigh–Bénard convection (RBC). Previously available knowledge limited to two dimensions is extended to three-dimensions, and a wide range of electric Reynolds numbers is analysed, extending into a fully inherently three-dimensional turbulent regime. Results reveal that structures appearing in three-dimensional electrohydrodynamics (EHD) are similar to those observed for RBC, and while two-dimensional EHD results bear some similarities with the three-dimensional results there are distinct differences. Analysis of two-point correlations and integral length scales show that full three-dimensional electroconvection is more chaotic than in two dimensions and this is also noted by qualitatively observing the roll structures that arise for both low (${\mathit{Re}}_{E} = 1$) and high electric Reynolds numbers (up to ${\mathit{Re}}_{E} = 120$). Furthermore, calculations of mean profiles and second-order moments along with energy budgets and spectra have examined the validity of neglecting the fluctuating electric field ${ E}_{i}^{\ensuremath{\prime} } $ in the Reynolds-averaged EHD equations and provide insight into the generation and transport mechanisms of turbulent EHD. Spectral and spatial data clearly indicate how fluctuating energy is transferred from electrical to hydrodynamic forms, on moving through the domain away from the charging electrode. It is shown that ${ E}_{i}^{\ensuremath{\prime} } $ is not negligible close to the walls and terms acting as sources and sinks in the turbulent kinetic energy, turbulent scalar flux and turbulent scalar variance equations are examined. Profiles of hydrodynamic terms in the budgets resemble those in the literature for RBC; however there are terms specific to EHD that are significant, indicating that the transfer of energy in EHD is also attributed to further electrodynamic terms and a strong coupling exists between the charge flux and variance, due to the ionic drift term.


Author(s):  
Marcus Kuschel ◽  
Bastian Drechsel ◽  
David Kluß ◽  
Joerg R. Seume

Exhaust diffusers downstream of turbines are used to transform the kinetic energy of the flow into static pressure. The static pressure at the turbine outlet is thus decreased by the diffuser, which in turn increases the technical work as well as the efficiency of the turbine significantly. Consequently, diffuser designs aim to achieve high pressure recovery at a wide range of operating points. Current diffuser design is based on conservative design charts, developed for laminar, uniform, axial flow. However, several previous investigations have shown that the aerodynamic loading and the pressure recovery of diffusers can be increased significantly if the turbine outflow is taken into consideration. Although it is known that the turbine outflow can reduce boundary layer separations in the diffuser, less information is available regarding the physical mechanisms that are responsible for the stabilization of the diffuser flow. An analysis using the Lumley invariance charts shows that high pressure recovery is only achieved for those operating points in which the near-shroud turbulence structure is axi-symmetric with a major radial turbulent transport component. This turbulent transport originates mainly from the wake and the tip vortices of the upstream rotor. These structures energize the boundary layer and thus suppress separation. A logarithmic function is shown that correlates empirically the pressure recovery vs. the relevant Reynolds stresses. The present results suggest that an improved prediction of diffuser performance requires modeling approaches that account for the anisotropy of turbulence.


Author(s):  
Piotr Łuczyński ◽  
Dennis Toebben ◽  
Manfred Wirsum ◽  
Wolfgang F. D. Mohr ◽  
Klaus Helbig

In recent decades, the rising share of commonly subsidized renewable energy especially affects the operational strategy of conventional power plants. In pursuit of flexibility improvements, extension of life cycle, in addition to a reduction in start-up time, General Electric has developed a product to warm-keep high/intermediate pressure steam turbines using hot air. In order to optimize the warm-keeping operation and to gain knowledge about the dominant heat transfer phenomena and flow structures, detailed numerical investigations are required. Considering specific warm-keeping operating conditions characterized by high turbulent flows, it is required to conduct calculations based on time-consuming unsteady conjugate heat transfer (CHT) simulations. In order to investigate the warm-keeping process as found in the presented research, single and multistage numerical turbine models were developed. Furthermore, an innovative calculation approach called the Equalized Timescales Method (ET) was applied for the modeling of unsteady conjugate heat transfer (CHT). The unsteady approach improves the accuracy of the stationary simulations and enables the determination of the multistage turbine models. In the course of the research, two particular input variables of the ET approach — speed up factor (SF) and time step (TS) — have been additionally investigated with regard to their high impact on the calculation time and the quality of the results. Using the ET method, the mass flow rate and the rotational speed were varied to generate a database of warm-keeping operating points. The main goal of this work is to provide a comprehensive knowledge of the flow field and heat transfer in a wide range of turbine warm-keeping operations and to characterize the flow patterns observed at these operating points. For varying values of flow coefficient and angle of incidence, the secondary flow phenomena change from well-known vortex systems occurring in design operation (such as passage, horseshoe and corner vortices) to effects typical for windage, like patterns of alternating vortices and strong backflows. Furthermore, the identified flow patterns have been compared to vortex systems described in cited literature and summarized in the so-called blade vortex diagram. The comparison of heat transfer in the form of charts showing the variation of the Nusselt-numbers with respect to changes in angle of incidence and flow coefficients at specific operating points is additionally provided.


2021 ◽  
Author(s):  
Hong Gong ◽  
xiongfei wang ◽  
Dongsheng Yang

The <i>dq</i>-frame admittance of closed-loop controlled three-phase converters is a linearized model that is dependent on the operating points of the system. Yet, it is impractical to measure the converter admittance at all operating points. This paper, thus, proposes an approach to estimating the <i>dq</i>-frame admittance of three-phase converters at a wide range of operating points. The method applies multidimensional interpolation to a given set of admittance data, which is measured from the pre-defined operating points. The accuracy of interpolation is then evaluated by using the posterior error estimation method. The number of pre-defined operating points is next adjusted to find a good compromise between the accuracy and efficiency of the approach. Simulations and experimental results verify the effectiveness of the approach.<div><br></div>


Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 3071
Author(s):  
Vladislav N. Kovalnogov ◽  
Ruslan V. Fedorov ◽  
Andrey V. Chukalin ◽  
Theodore E. Simos ◽  
Charalampos Tsitouras

The family of Numerov-type methods that effectively uses seven stages per step is considered. All the coefficients of the methods belonging to this family can be expressed analytically with respect to four free parameters. These coefficients are trained through a differential evolution technique in order to perform best in a wide range of Keplerian-type orbits. Then it is observed with extended numerical tests that a certain method behaves extremely well in a variety of orbits (e.g., Kepler, perturbed Kepler, Arenstorf, Pleiades) for various steplengths used by the methods and for various intervals of integration.


2021 ◽  
Vol 6 (01) ◽  
pp. 151-172
Author(s):  
Ubaldo Cella ◽  
Corrado Groth ◽  
Stefano Porziani ◽  
Alberto Clarich ◽  
Francesco Franchini ◽  
...  

Abstract The fluid dynamic design of hydrofoils involves most of the typical difficulties of aeronautical wings design with additional complexities related to the design of a device operating in a multiphase environment. For this reason, “high fidelity” analysis solvers should be, in general, adopted also in the preliminary design phase. In the case of modern fast foiling sailing yachts, the appendages accomplish both the task of lifting up the boat and to make possible upwind sailing by contributing balance to the sail side force and the heeling moment. Furthermore, their operative design conditions derive from the global equilibrium of forces and moments acting on the system which might vary in a very wide range of values. The result is a design problem defined by a large number of variables operating in a wide design space. In this scenario, the device performing in all conditions has to be identified as a trade-off among several conflicting requirements. One of the most efficient approaches to such a design challenge is to combine multi-objective optimization strategies with experienced aerodynamic design. This paper presents a numerical optimization procedure suitable for foiling multihulls. As a proof of concept, it reports, as an application, the foils design of an A-Class catamaran. The key point of the method is the combination of opportunely developed analytical models of the hull forces with high fidelity multiphase analyses in both upwind and downwind sailing conditions. The analytical formulations were tuned against a database of multiphase analyses of a reference demihull at several attitudes and displacements. An aspect that significantly contributes to both efficiency and robustness of the method is the approach adopted to the geometric parametrization of the foils which was implemented by a mesh morphing technique based on Radial Basis Functions.


2011 ◽  
Vol 28 (2) ◽  
pp. 151 ◽  
Author(s):  
R. A Ghani ◽  
T. L Goh ◽  
A. M Hariri ◽  
Y. N Baizura

The basic friction angle, Φb for artificially sawn discontinuity planes for fresh granite, as determined by tilt testing, has an average value of 30º. For the natural rough discontinuity surfaces, a wide range of values have been determined for the peak friction angle, Φpeak ranging from 47º to a maximum value of 80º, depending on the joint roughness coefficient (JRC). The average values of the friction angles for the different degrees of roughness were as follows: JRC 2–4 = 58°; JRC 6–8 = 60°; JRC 8–10 = 47°; JRC 12–14 = 60°; JRC 14–16 = 71° ; JRC 18–20 = 80°.


2021 ◽  
Author(s):  
Konstantin Gregor ◽  
Thomas Knoke ◽  
Andreas Krause ◽  
Mats Lindeskog ◽  
Anja Rammig

&lt;p&gt;Forests are considered a major player in climate change mitigation since they influence local and global climate through biogeochemical and biogeophysical feedbacks. However, they are themselves vulnerable to future environmental changes. Thus, forest management needs to focus on both mitigation and adaptation. The special challenge is that decisions on management strategies must be taken today while still a broad range of emission pathways is possible, and a good decision regarding one assumed pathway might turn out to be a bad decision when a different one materializes.&lt;/p&gt;&lt;p&gt;With our study we try to aid this decision-making process by finding management portfolios that provide relevant ecosystem functions such as local and global climate regulation, water availability, flood protection, and timber production for a wide range of future climate scenarios. To simulate according ecosystem processes and functions, we run the dynamic vegetation model LPJ-GUESS for the most relevant forest types across Europe for four different RCPs and five different management options. We analyze our simulation outputs using robust optimization techniques to determine optimal forest management portfolios for each 0.5&amp;#176; grid cell in Europe that ensure a balanced provision of all considered ecosystem functions in the future under any of the four RCPs.&lt;/p&gt;&lt;p&gt;Generally, our simulations and optimizations show that diversified management portfolios are most suitable to provide the set of considered ecosystem functions in all climate scenarios everywhere in Europe. While the portfolios show different compositions in different regions, they are quite similar in adjacent grid cells. The suggested future forest composition in Europe tends to be fairly close to present day values except for Northern Europe where a much higher proportion of deciduous types is proposed.&lt;/p&gt;&lt;p&gt;Management as high forest (trees emerging from seeds) remains the most important form of management. The proposed share of coppice management is much higher in Central and Northern Europe (~20%) than in Southern Europe, where its disadvantages (e.g., high water consumption and its non-suitability to provide long-lived wood products) are more pronounced.&lt;/p&gt;&lt;p&gt;A succession of ~30% of managed forest to natural forest is proposed by the optimization as it provides highest carbon storage and surface roughness values. However, this infeasibly high share is reduced if the provision of wood harvest is valued higher in the optimization compared to the other ecosystem functions.&lt;/p&gt;&lt;p&gt;Current public focus on forests lies often on their potential for carbon sequestration, but future forest management must also address the other services that they provide. This work gives insights on how this may be done.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document