Nuclear Power and Nuclear Technologies Can Benefit from Regional Implementation of Multinational Approaches

Author(s):  
Charles McCombie

Abstract Nuclear energy is a proven low carbon technology that can provide the dispatchable electricity needed to stabilise national grids that have increasing shares of renewables. Other nuclear technologies are applied in medicine, industry and research to provide benefits to both developed and developing countries around the world. The safe and secure disposal of the wastes generated is an essential component of nuclear applications. In particular, geological disposal facilities (GDFs) for radioactive wastes play a key role in ensuring acceptance of the continued and expanded use of nuclear power. They are also a necessity for non-nuclear power nations employing other technologies that produce small quantities of long-lived radioactive wastes. In all waste management programmes, implementing a GDF is a challenging task requiring sensitive stakeholder interactions and significant funding. For small or new programmes, the societal and economic challenges are both large. Multinational repositories (MNRs) - GDFs disposing of radioactive wastes from several countries - can provide a solution. Several national programmes have adopted the MNR concept as part of a so-called 'dual track' approach in their national waste management strategy. An important organisational development is currently underway to establish ERDO as a formal legal entity, the ERDO Association, with dedicated facilities and personnel. By supporting MNR development, we can work towards a world in which all countries can benefit from nuclear technologies, free from safety, security or environmental concerns related to the disposal of their radioactive wastes.

Author(s):  
V.K. Ivanov ◽  
◽  
A.V. Lopatkin ◽  
A.N. Menyajlo ◽  
E.V. Spirin ◽  
...  

The Russian Government approved the Energy Strategy of the Russian Federation (Government Decree No.1523-r of June 9, 2020). The Strategy envisages the use of both thermal (TR) and fast (FR) reactors. The Strategy points out that the problems of nuclear power are associated with po-tential high expenses for irradiated fuel and radioactive wastes management. The previously de-signed model of the Russian nuclear energy development suggested that fast reactors only would operate at NPPs after 2010. Radiological equivalence, expressed as the equivalence of lifetime radiation risks to the public from radioactive wastes and from primary uranium ore, was shown to be achieved after 100-year storage. The burnup of 241Am, 237Np и 242Сm in closed nu-clear fuel cycle with fast reactors is a key part in the achievability of radiation risks equivalence. Scenarios of the Russian nuclear energy development through to 2100 with account of uncertain-ty factors in the measurement of contribution of fast and thermal reactors to the electric energy production are considered in the paper. The following three scenarios were developed: uncer-tainty is replaced by FRs; uncertainty is replaced by TRs; 50 per cent of FRs and 50 per cent of TRs replace uncertainty. If the energy is produced by fast reactors only (scenario 1) radiological equivalence was found to be achieved in 412 years. In two other scenarios radiological equiva-lence will be achieved after more than 1000 years. Contribution of main dose-forming radionu-clides and relevant ratios of potential biological hazards is included in models regardless of whether uncertainty in nuclear energy development is taking or not taking into account. Results of the study of conditions for radiological equivalence achievement should be used for amending Strategic plan of Russian nuclear power development through to 2100 that meets requirements of radiation ecology and radiation protection of the public.


Author(s):  
Tero Lytsy ◽  
Mia Ylä-Mella

Fennovoima is Finland’s third nuclear power company founded in 2007. Fennovoima will build a new nuclear power plant, Hanhikivi 1, in Pyhäjoki municipality located in Northern Finland. Currently Fennovoima is evaluating bids from reactor suppliers. Originally two suppliers, AREVA and Toshiba Heavy Industries were invited to bid for the plant but later also a bid from Rosatom were invited. The plant supplier will be selected in 2013. Platom is a Finnish company with extensive experience in radioactive waste management. In the beginning of 2008, Platom was assigned by Fennovoima as radioactive waste management consultant and to develop radioactive waste management strategy and to support Fennovoima in negotiations with plant suppliers in waste management aspects. Since Fennovoima has started, there have been some changes to the regulatory requirements which had to be taken into account while developing the strategy. One important change is due to the Government Degree 27.11.2008/736 which establishes a new waste category of very low-level waste following international development and the “new” IAEA waste classification. Other important change was introduced by the change 342/2008 to the Nuclear Energy Act allowing some nuclear waste to be delivered to another country for treatment. These and many more requirements had to be considered when developing the strategy. Early work by Platom was mostly done to support development of application for Decision-in-Principle. This was the first important licensing step for Fennovoima. Work started with studies and plans which were used by Fennovoima to gather the know-how required to draw up the application. Descriptions of waste streams and waste management technologies were developed as well as preliminary waste inventories and studies for final disposal, including preliminary dimensioning of the repository facilities. Based on these plans nuclear regulator’s preliminary safety assessment was performed. The work was successfully completed as in 2010 the Government of Finland granted Fennovoima a permit to build a new nuclear power plant. The work continued in 2012 when bids were received for EPR and ABWR type reactors. Plans developed earlier were elaborated into a detailed strategy and the proposed waste management solutions were evaluated. This allowed feedback from the bids into the strategy and to the bid specification and they both were developed. Also waste inventories were elaborated which allowed development of reactor design specific disposal strategies. The main objective of work has been to establish basis for safe and efficient radioactive waste management which meets all the relevant national and international recommendations, requirements and regulations, takes advantage of best available and state-of-art technologies and offers fit-for-purpose solutions. All the work was performed to accommodate requirement based management system.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3626
Author(s):  
Janusz Gierszewski ◽  
Łukasz Młynarkiewicz ◽  
Tomasz R. Nowacki ◽  
Jacek Dworzecki

This article presents an analysis of the future role of nuclear energy in Poland’s path to a low-carbon energy transition. The arguments in favor of implementing nuclear power are to be found on three levels: energy security, economic competitiveness and energy efficiency, and lastly, limited environmental impact. In the process of creating this study, the methodology in the field of security sciences was used, including its interdisciplinary approach. Theoretical methods were used, e.g., critical analysis of scientific sources and comparison of statistical data and empirical methods, e.g., document analysis, comparative analysis. The article is based on an analysis of the literature on the subject, applicable legal acts, and government strategies in the field of energy security. The article contains the results of research no. BS.21.6.13 carried out by a research team from the Pomeranian Academy in Słupsk that allowed to indicate the probable directions of transformation of the energy sector in Poland in the next decade.


Author(s):  
Kathleen Araújo

Nuclear energy is one of the most significant sources of low carbon energy in use in the power sector today. In 2013, nuclear energy represented roughly 11% of the global electricity supply, with growth projected to occur in China, India, and Russia (International Atomic Energy Agency [IAEA], n.d.a; NEA, n.d.). As a stable source of electricity, nuclear energy can be a stand-alone, base-load form of electricity or complement more variable forms of low carbon energy, like wind and solar power. Among the energy technologies considered here, nuclear energy is complex not only for the science behind it, but also for its societal, environmental, and economic dimensions.This chapter explores the rapid rise of French nuclear energy in the civilian power sector. It considers what a national energy strategy looks like under conditions of high concern about energy supply security when limited domestic energy resources appear to exist. The case reveals that centralized planning with complex and equally centralized technology can be quite conducive to rapid change. However, continued public acceptance, especially for nuclear energy, matters in the durability of such a pathway. France is a traditional and currently global leader in nuclear energy, ranking the highest among countries for its share of domestic electricity derived from nuclear power at 76% of total electricity in 2015 (IAEA, n.d.b). France is highly ranked for the size of its nuclear reactor fleet and amount of nuclear generation, second only to the United States. In 2016, this nation of 67 million people and economy of $2.7 trillion had 58 nuclear power reactors (CIA, n.d.; IAEA, n.d.b). Due to the level of nuclear energy in its power mix, France has some of the lowest carbon emissions per person for electricity (IEA, 2016a). France is also one of the largest net exporters of electricity in Europe, with 61.7 TWh exported (Réseau de Transport d’électricité [RTE], 2016), producing roughly $3.3 billion in annual revenue (World Nuclear Association [WNA], n.d). This European country has the largest reprocessing capacity for spent fuel, with roughly 17% of its electricity powered from recycled fuel (WNA, n.d.).


2013 ◽  
Vol 805-806 ◽  
pp. 1429-1433 ◽  
Author(s):  
Jin Li ◽  
Chu Fu Li

Coal-based synfuels plants are facing serious pressure on CO2 emissions reduction. Developing the coal-based synfuels system coupled with nuclear energy is an effective approach to reduce CO2 emissions. This work analyzes CO2 emissions features in the coal-based synfuels system, and further investigates three coupling paths between the coal-based synfuels system and nuclear energy. Subsequently, an inherent-safety and low-carbon coal-based synfuels system coupled with nuclear energy is proposed. In the coupled system, valley nuclear power is provided to conventional water electrolyser for hydrogen/oxygen production, and oxygen and hydrogen are supplied to the coal gasification and fuel synthesis processes, respectively. The simulation results show that the coupled system can reduce about 50% raw coal consumption and almost all CO2 emissions compared to the conventional coal-based synfuels system, meanwhile it can improve the peak shaving capacity of nuclear power plants.


Author(s):  
John Hanson

The electric power industry in the United States will face a number of great challenges in the next two decades, including increasing electricity demand and the aging of the current fleet of power plants. These challenges present a major test for the industry, which must invest between $1.5 trillion and $2 trillion by 2030 to meet the increased demand. In addition to these challenges, the potential for climate legislation, controversy over hydraulic fracturing, and post-Fukushima safety concerns have all resulted in significant uncertainty regarding the economics of all major sources of base-load electricity. Currently nuclear power produces 22% of the nation’s electricity, and over 70% of the nation’s low-carbon electricity, even though unfavorable economic conditions have stalled construction of new reactors for over 30 years. The economics are changing, however, as evidenced by the recent construction and operating licenses (COLs) awarded by the Nuclear Regulatory Commission to Southern Company and SCANA Corporation to build two new units each. The successful construction of these units could lead to more favorable financing for future plants. This improved financing, especially if combined with appropriate additional government support, could provide serious momentum for the resurgence of nuclear power in the United States. The most important way in which government support could benefit nuclear power is by increasing the amount of loan guarantees provided to the first wave of new nuclear power plants. This will help encourage additional new builds, which will help reduce the financing risk premium for new nuclear and improve interest rates for future plants. Instead of simply increasing loan guarantees for nuclear energy, a permanent federal financing structure should be established to provide loan guarantees for “clean energy” technologies in general, a category in which nuclear energy should be included. Most importantly, any changes should be made as part of a coherent, long-term energy policy, which would provide utilities with the correct tools to make the necessary investments, and the confidence that will allow them to undertake large-scale projects.


2018 ◽  
Vol 9 (09) ◽  
pp. 21041-21049 ◽  
Author(s):  
I Putu Sudana Satria Artha ◽  
Nyoman Utari Vipriyanti ◽  
I Putu Sujana

Garbage can be interpreted as a consequence of the activities of human life. It is undeniable, garbage will always be there as long as life activities continue to run. Every year, it can be ascertained that the volume of waste will always increase along with the increasing pattern of public consumerism. The landfill which is increasingly polluting the environment requires a technique and management to manage waste into something useful and of economic value, Bantas Village, Selemadeg Timur District, Tabanan Regency currently has a Waste Management Site (TPS3R) managed by Non-Governmental Organizations (KSM ) The source of waste comes from Households, Stalls, Restaurant Entrepreneurs, Schools, Offices and Ceremonies which are organic and inorganic waste. The waste management system at Bantas Lestari TPS with 3R system is Reduce (reduction of waste products starts from the source), Reuse (reuse for waste that can be reused) and Recycle (recycling waste) to date it is still running but not optimal. The method used in this research is descriptive quantitative with data analysis using SWOT analysis. This study produces a Waste Management Strategy which is the result of research from the management aspect, aspects of human resources and aspects of infrastructure facilities.


Sign in / Sign up

Export Citation Format

Share Document