Experimental and numerical analysis of shear process of a high particle content bonding material

2021 ◽  
pp. 1-26
Author(s):  
Yizhan Yang ◽  
Jiliang Li ◽  
Jiankang Chen

Abstract In this study, polymer-bonded sugar (PBS) is used as an substitute material for polymer-bonded explosive (PBX), and the shear failure process of PBS under compressive loading. Firstly, the shear failure process of PBS was analyzed by a series of experiments, and it was found that the shear band appearing on the surface of the specimen was not symmetrical. Further theory analysis showed that it was triggered by the evolution of asymmetric damage caused by internal defects in the material. In addition, through investigating the distribution of experimental scatters, we found that the material undergoes a relatively long period of internal microstructure adjustment before shear failure occurs, this adjustment will undoubtedly affect the evolution of shear band. More importantly, a data density method was used to quantify the adjustment process. Finally, by using finite element simulation, the effects of matrix-particle-interface strength on the mechanical response or damage evolution of the PBS were thoroughly examined. This research has reference significance for understanding the damage evolution process of high particle content composite materials.

2020 ◽  
pp. 105678952098387
Author(s):  
PLP Wasantha ◽  
D Bing ◽  
SQ Yang ◽  
T Xu

The combined effect of pre-existing cracks and pores on the damage evolution behaviour and mechanical properties of rocklike materials under uniaxial compression was numerically studied. Simulations of cracks and pores alone showed that increasing crack length and pore diameter decrease uniaxial compressive strength (UCS) and elastic modulus. Subsequent simulations considered two types of combinations of pre-existing cracks and pores – two cracks either side of a centric pore, and two pores either side of a centric crack – and the distance between cracks and pores was changed. In the case of two cracks at either side of the pore, UCS increased only slightly when the distance between the cracks and pore was increased. This was attributed to the more profound effect of the presence of the pore on UCS, and was confirmed by the progressive crack development characteristics and the major principal stress distribution patterns, which showed that the cracks initiated from the tips of the two pre-existing cracks made little or no contribution to the ultimate macroscopic failure. In contrast, models with two pores at either side of a centric crack showed a marked dependency of UCS on the distance between the pores and the crack. Cracks propagating from pre-existing pores made a greater contribution to the ultimate macroscopic failure when the pores were close to the centric crack and the effect gradually diminished with increasing space between pre-existing pores and the centric crack. Major principal stress distributions showed an asymmetric mobilisation of compressive stresses at the right and left sides of the two pores, favouring macroscopic shear failure when they were close to the centric crack which had led to a lower UCS. Overall, this study presents some critical insights into crack-pore interaction behaviour and the resulting mechanical response of rocklike materials to assist with the design of rock structures.


2019 ◽  
Vol 2019 ◽  
pp. 1-21
Author(s):  
Jun Xie ◽  
Yougang Yang

In order to analyze the torsional shear process of asphalt mixtures in a microscopic view, the numerical simulation of a torsional shear test of an asphalt mixture was carried out by discrete element method. Based on the defects of existing algorithms, the method of random reconstruction of the existing 3D model of the asphalt mixture was improved, and a new reconstruction method was proposed. A 3D numerical model of the asphalt mixture contained irregular-shaped coarse aggregate, mineral gradation, and asphalt mortar; furthermore, the particle algorithm established the air void distribution. Then, the numerical simulation of the asphalt mixture’s torsional shear was completed; in addition, the stress, displacement, and contact of the specimens at each stage were analyzed. The results showed that the stress and displacement in different stages changed greatly with the loading, i.e., the crack generated from a weak point on the surface and then spread to the ends with an oblique angle of about 45°. At the same time, the shear failure process of the asphalt mixture was studied. The virtual test method could accomplish the implementation of the numerical simulation of torsional shear; it also provided a good research method for analysis of the asphalt mixture’s shear failure process.


Author(s):  
Sheng Bao ◽  
Shengnan Hu ◽  
Yibin Gu

The objective of this research is to explore the correlation between the piezomagnetic response and ratcheting failure behavior under asymmetrical cyclic stressing in X80 pipeline steel. The magnetic field variations from cycle to cycle were recorded simultaneously during the whole-life ratcheting test. Analysis made in the present work shows that the piezomagnetic hysteresis loop evolves systematically with the number of cycles in terms of its shape and position. Corresponding to the three-stage process in the mechanical response, piezomagnetic response can also be divided into three principal stages, but the evolution of magnetic parameter is more complex. Furthermore, the loading branch and unloading branch of the magnetic field-stress hysteresis loop separate gradually from each other during ratcheting failure process, leading to the shape of hysteresis loop changes completely. Therefore, the progressive degradation of the steel under ratcheting can be tracked by following the evolution of the piezomagnetic field. And the shape transition of the hysteresis loop can be regarded as an early warning of the ratcheting failure.


2011 ◽  
Vol 378-379 ◽  
pp. 15-18
Author(s):  
Yong Bin Zhang ◽  
Zheng Zhao Liang ◽  
Shi Bin Tang ◽  
Jing Hui Jia

In this paper, a ring shaped numerical specimen is used to studying the failure process in brittle materials. The ring specimen is subjected to a compressive diametral load and contains two angled central cracks. Numerical modeling in this study is performed. It is shown that the obtained numerical results are in a very good agreement with the experiments. Effect of the crack orientation angle on the failure modes and loading-displace responses is discussed. In the range of 0°~40°, the fracture paths are curvilinear forms starting from the tip of pre-existing cracks and grow towards the loading points. For the crack orientation angle 90°, vertical fractures will split the specimen and the horizontal cracks do not influence the fracture process.


2021 ◽  
Author(s):  
Liang Chen ◽  
Yu Wan ◽  
Jian-Jian He ◽  
Chun-Mu Luo ◽  
Shu-fa Yan ◽  
...  

Abstract Seepage-induced piping erosion is observed in many geotechnical structures. This paper studies the piping mechanism of gap-graded soils during the whole piping erosion failure process under a supercritical hydraulic gradient. We define the supercritical ratio Ri and study the change in the parameters such as the flow velocity, hydraulic conductivity, and fine particle loss with Ri. Under steady flow, a formula for determining the flow velocity state of the sample with Ri according to the fine particle content and relative density of the sample was proposed; during the piping failure process, the influence of Rimax on the rate at which the flow velocity and hydraulic conductivity of the sample increase as Ri decreases was greater than that of the initial relative density and the initial fine particle content of the sample. Under unsteady flow, a larger initial relative density corresponds to a smaller amplitude of increase in the average value of the peak flow velocity with increasing Ri. Compared with the test under steady flow, the flow velocity under unsteady flow would experience abrupt changes. The relative position of the trend line L of the flow velocity varying with Ri under unsteady flow and the fixed peak water head height point A under steady flow were related to the relative density of the sample.


2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
Chi Yao ◽  
Sizhi Zeng ◽  
Jianhua Yang

Anisotropy in strength and deformation of rock mass induced by bedding planes and interlayered structures is a vital problem in rock mechanics and rock engineering. The modified rigid block spring method (RBSM), initially proposed for modeling of isotropic rock, is extended to study the failure process of interlayered rocks under compression with different confining pressures. The modified rigid block spring method is used to simulate the initiation and propagation of microcracks. The Mohr–Coulomb criterion is employed to determine shear failure events and the tensile strength criterion for tensile failure events. Rock materials are replaced by an assembly of Voronoi-based polygonal blocks. To explicitly simulate structural planes and for automatic mesh generation, a multistep point insertion procedure is proposed. A typical experiment on interlayered rocks in literature is simulated using the proposed model. Effects of the orientation of bedding planes with regard to the loading direction on the failure mechanism and strength anisotropy are emphasized. Results indicate that the modified RBSM model succeeds in capturing main failure mechanisms and strength anisotropy induced by interlayered structures and different confining pressures.


2011 ◽  
Vol 70 ◽  
pp. 87-92 ◽  
Author(s):  
Shao Peng Ma ◽  
Dong Yan ◽  
Xian Wang ◽  
Yan Yan Cao

Observation of damage evolution is of great importance to the understanding of the failure process of rock materials. High-speed DIC system is constructed and used to observe the strain field evolution of the granodiorite disc in Brazilian test. The strain fields at different load levels are analyzed based on the stain abnormality indicator (SAI) which is the ratio of the strain measured in experiment to the strain from theoretical solution in an isotropy and elastic model. SAI could be used to indicate the damage in the specimen. The process of damage and failure of the specimen in Brazilian disc test is quantitatively analyzed and deeply discussed according to the strain fields and the statistics of SAI. Experimental results in this paper show that the failure process of the disc specimen in Brazilian test is not simple crack propagation under tensile load, but a complicated damage evolution procedure.


Author(s):  
Les Kalman ◽  
Amanda Maria de Oliveira Dal Piva ◽  
Talita Suelen de Queiroz ◽  
João Paulo Mendes Tribst

Orofacial injuries are common occurrences during contact sports activities; however, there is an absence of data regarding the performance of hybrid occlusal splint mouthguards, especially during compressive loading. To evaluate the total deformation and stress concentration, a skull model was selected and duplicated to receive two different designs of mouthguard devices: one model received a conventional custom-made mouthguard (MG) with 4-mm thickness and the other received a novel hybrid occlusal splint-mouthguard (HMG) with the same thickness. Both models were subdivided into finite elements. The frictionless contacts were used, and a nonlinear analysis was performed simulating the compressive loading in occlusion. The results were presented in von-Mises stress maps (MPa) and Total Deformation (mm). A higher stress concentration in teeth was observed for the model with the conventional MG, while the HMG design displayed a promising mechanical response with lower stress magnitude. The HMG de-sign displayed a higher magnitude of stress on its occlusal portion than the MG design. The hybrid mouthguard (HMG) reduced (1) jaw displacement during chewing and (2) the generated stresses in maxil-lary and mandibular teeth.


2011 ◽  
Vol 90-93 ◽  
pp. 74-78 ◽  
Author(s):  
Jun Hu ◽  
Ling Xu ◽  
Nu Wen Xu

Fault is one of the most important factors affecting tunnel instability. As a significant and casual construction of Jinping II hydropower station, when the drain tunnel is excavated at depth of 1600 m, rockbursts and water inrush induced by several huge faults and zone of fracture have restricted the development of the whole construction. In this paper, a progressive failure progress numerical analysis code-RFPA (abbreviated from Rock Failure Process Analysis) is applied to investigate the influence of faults on tunnel instability and damaged zones. Numerical simulation is performed to analyze the stress distribution and wreck regions of the tunnel, and the results are consistent with the phenomena obtained from field observation. Moreover, the effects of fault characteristics and positions on the construction mechanical response are studied in details. Some distribution rules of surrounding rock stress of deep-buried tunnel are summarized to provide the reasonable references to TBM excavation and post-support of the drain tunnel, as well as the design and construction of similar engineering in future.


Sign in / Sign up

Export Citation Format

Share Document