Frictional Characteristics of Carbide Ceramics in Water

2021 ◽  
Vol 144 (1) ◽  
Author(s):  
Wei Zhang ◽  
Xiaoyu Chen ◽  
Seiji Yamashita ◽  
Mitsuhiro Kubota ◽  
Hideki Kita

Abstract Frictional characteristics of carbide ceramics (SiC, B4C–SiC, and B4C) sliding against SiC balls in water were measured over a wide range of test conditions. Carbide ceramics can obtain hydrodynamic lubrication with low friction coefficients at 20 and 40 N; however, carbide ceramics cannot obtain hydrodynamic lubrication with low friction coefficients at 5 N. Carbide ceramics exhibit lower friction coefficients at 20 and 40 N than those at 5 N in each lubrication regime. Carbide ceramics can exhibit a wider application range with low friction at high loads (20 and 40 N). The low friction of carbide ceramics is achieved by the combination of hydrodynamic lubrication and tribochemical reactions. The products of tribochemical reactions of carbide ceramics improve the viscosity of water at or near the worn surfaces of carbide ceramics, promoting the hydrodynamic lubrication for carbide ceramics. B4C ceramic shows lower friction coefficients than those of SiC and B4C–SiC ceramics in boundary lubrication and mixed lubrication at 20 and 40 N.

Author(s):  
Fei Guo ◽  
Fan Wu ◽  
Fangyong Wu ◽  
Yuming Wang

The tribological properties of self-mated silicon carbide, self-mated cemented carbide, and cemented carbide/silicon carbide under water lubrication were studied. The three matched pairs could achieve low-friction coefficients (0.01–0.03) under certain test conditions. Additionally, the dependence of the friction coefficients on the rotation speed and load were measured. By combining these results with the observed surface topography and wear measurements, it was determined that the three matched pairs were in the hydrodynamic lubrication. In addition, combined with experiments in ethylene glycol and PAO40, it was shown that the actual viscosity of the lubricant had a significant influence on the realization of low friction. Furthermore, matching materials had an influence on the tribological properties, which may be related to the surface wettability of the lubricant.


Lubricants ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 110 ◽  
Author(s):  
Michael Müller ◽  
Lukas Stahl ◽  
Georg-Peter Ostermeyer

Starved lubrication is an important strategy for minimizing the amount of lubricant needed, and also inevitably occurs during idling and fail-safe lubrication. In this regime, however, the flow of the lubricant and the related friction coefficients are yet to be fully understood. This research aims to make fundamental contributions to the understanding of contact mechanics of partially lubricated contacts. Recent experiments with a pin-on-disk tribometer examined the microscopic behavior of partially filled gaps. Using a new experimental setup on a macroscale, new insights into partially filled gaps with rough surfaces were gained. This work presents the systematic analyses of the lubricant flow, friction coefficients, and other variables over a wide range of friction parameters. Distinct friction behaviors were observed, and similar effects occur on both the micro and macroscale. The experimental results show that a typical Stribeck characteristic is visible regarding not only the relative velocity, but also regarding the lubricant filling level in the gap. The fluid exhibits a variety of flow patterns for various velocities and viscosities. The patterns relate to different friction regimes, such as dry friction and mixed lubrication. It is concluded that the filling level is a valid parameter for regulating the transition from dry friction to hydrodynamic lubrication. These findings are quantified regarding the filling level and it is shown that for the identification of the friction regimes the filling level is an independent parameter in addition to the established parameters like speed, viscosity and pressure.


2007 ◽  
Vol 129 (3) ◽  
pp. 611-620 ◽  
Author(s):  
J. H. Choo ◽  
R. P. Glovnea ◽  
A. K. Forrest ◽  
H. A. Spikes

In recent years it has been shown experimentally by a number of workers that simple, Newtonian liquids can slip against solid surfaces when the latter are both very smooth and lyophobic. It has also been shown theoretically how, based on a half-wetted bearing principle, this phenomenon may be used to significantly reduce friction in lubricated sliding contacts and thus make possible the hydrodynamic lubrication of very low load contacts. This paper describes the experimental validation of this concept. A low load bearing is constructed and the influence of surface roughness and the wetting properties of the surfaces on friction are investigated over a wide range of sliding speeds. It is shown that liquid slip can be used to considerably reduce friction in full film, hydrodynamic conditions.


2021 ◽  
Vol 69 (4) ◽  
Author(s):  
Michael Chandross ◽  
Nicolas Argibay

AbstractThe friction behavior of metals is directly linked to the mechanisms that accommodate deformation. We examine the links between mechanisms of strengthening, deformation, and the wide range of friction behaviors that are exhibited by shearing metal interfaces. Specifically, the focus is on understanding the shear strength of nanocrystalline and nanostructured metals, and conditions that lead to low friction coefficients. Grain boundary sliding and the breakdown of Hall–Petch strengthening at the shearing interface are found to generally and predictably explain the low friction of these materials. While the following is meant to serve as a general discussion of the strength of metals in the context of tribological applications, one important conclusion is that tribological research methods also provide opportunities for probing the fundamental properties and deformation mechanisms of metals.


Friction ◽  
2021 ◽  
Author(s):  
Luyao Gao ◽  
Xiaoduo Zhao ◽  
Shuanhong Ma ◽  
Zhengfeng Ma ◽  
Meirong Cai ◽  
...  

AbstractSilicone elastomers-based materials have been extensively involved in the field of biomedical devices, while their use is extremely restricted due to the poor surface lubricity and inherent hydrophobicity. This paper describes a novel strategy for generating a robust layered soft matter lubrication coating on the surface of the polydimethylsiloxane (PDMS) silicone elastomer, by entangling thick polyzwitterionic polyelectrolyte brush of poly (sulfobetaine methacrylate) (PSBMA) into the sub-surface of the initiator-embedded stiff hydrogel coating layer of P(AAm-co-AA-co-HEMA-Br)/Fe, to achieve a unified low friction and high load-bearing properties. Meanwhile, the stiff hydrogel layer with controllable thickness is covalently anchored on the surface of PDMS by adding iron powder to provide catalytic sites through surface catalytically initiated radical polymerization (SCIRP) method and provides high load-bearing capacity, while the topmost brush/hydrogel composite layer is highly effective for aqueous lubrication. Their synergy effects are capable of attaining low friction coefficient (COFs) under wide range of loaded condition in water environment with steel ball as sliding pair. Furthermore, the influence of mechanical modulus of the stiff hydrogel layer on the lubrication performance of layered coating is investigated, for which the COF is the lowest only when the modulus of the stiff hydrogel layer well matches the PDMS substrate. Surprisingly, the COF of the modified PDMS could remain low friction (COF < 0.05) stably after encountering 50,000 sliding cycles under 10 N load. Finally, the surface wear characterizations prove the robustness of the layered lubricating coating. This work provides a new route for engineering lubricious silicon elastomer with low friction, high load-bearing capacity, and considerable durability.


2014 ◽  
Vol 898 ◽  
pp. 763-766
Author(s):  
Zhi Hao Li

The research and application of artificial intelligence has a very wide range in intelligent robot field. Intelligent robot can not only make use of artificial intelligence gain access to external data, information, (such as stereo vision system, face recognition and tracking, etc.), and then deal with it so as to exactly describe external environment, and complete a task independently, owing the ability of learning knowledge, but also have self-many kinds of artificial intelligence like judgment and decision making, processing capacity and so on. It can make corresponding decision according to environmental changes. Its application range is expanding. In deep sea exploration, star exploration, mineral exploration, heavy pollution, domestic service, entertainment clubs, health care and so on, the figure of intelligent robots artificial intelligence application can all be seen.


2021 ◽  
pp. 53-56
Author(s):  

The main contours of the bearing surfaces of friction pairs with hydrodynamic lubrication are considered. Analysis of tabular data and graphs obtained by experimental methods made it possible to establish additional parameters of influence on the hydrodynamic characteristics of the friction process and the operational characteristics of tribological systems, in a wide range of load-speed modes. Keywords: sliding bearing, hydrodynamics, bushing, bearing surface, profile, circle, ellipse, wavy contour, wear. [email protected]


2013 ◽  
Vol 364 ◽  
pp. 28-32
Author(s):  
Long Huang ◽  
Wen Li Ma ◽  
Jin Long Huang

The use of hydrostatic bearing for support of telescope offers a number of potential performance advantages, but the structure parameter of bearing is the main factor which influence the bearing. The temperature rise of bearing is also important for the stiffnees of the telescope mount.In addition to the known benefit of mount stiffness and tracking accuracy from exceedingly low friction, the hydrostatic bearing provides a wide range of geometric possibilities for large telescopes [1].This paper analyzes various familiar hydrostatic bearing for the azimuth and elevation axes of telescope.Theoretical calculation and simulation show that the performance of bearing meets telescope’s design requirements.The principle and process of this work and Finite Element Analysis (FEA) are introduced in detail. According to the CFX result, the structure parameter and performance of bearing ,temperature field and pressure distribution have obtained.


1999 ◽  
Vol 605 ◽  
Author(s):  
B.T. Crozier ◽  
M.P. de Boer ◽  
J.M. Redmond ◽  
D.F. Bahr ◽  
T.A. Michalske

AbstractA MEMS test structure capable of measuring friction between polysilicon surfaces under a variety of test conditions has been refined from previous designs. The device is applied here to measuring friction coefficients of polysilicon surfaces under different environmental, loading, and surface conditions. Two methods for qualitatively comparing friction coefficients (µ) using the device are presented. Samples that have been coated with a self-assembled monolayer of the lubricating film perfluorinated-decyltrichlorosilane (PFTS) have a coefficient of friction that is approximately one-half that of samples dried using super-critical CO2 (SCCO2) drying. Qualitative results indicate that µ is independent of normal pressure. Wear is shown to increase µ for both supercritically dried samples and PFTS coated samples, though the mechanisms appear to be different. Super critically dried surfaces appear to degrade continuously with increased wear cycles, while PFTS coated samples reach a steady state friction value after about 105 cycles.


2021 ◽  
Vol 9 (1) ◽  
pp. 3-103
Author(s):  
Hana Chan ◽  
◽  
Devon Albert ◽  
F Scott Gayzik ◽  
Andrew R Kemper ◽  
...  

In order to accurately represent the response of live occupants during pre-crash events and frontal crashes, computational human body models (HBMs) that incorporate active musculature must be validated with appropriate volunteer data that represents a wide range of demographic groups and potential crash conditions. The purpose of this study was to quantify and compare occupant kinematic responses for unaware (relaxed) small female and midsize male volunteers during low-speed frontal and frontal-oblique sled tests across multiple test conditions, while recognizing, assessing, and accounting for potential acclimation effects due to multiple exposures. Six 5th percentile female and six 50th percentile male volunteers were exposed to multiple low-speed frontal and frontal-oblique sled tests on two separate test days. Volunteers experienced one test orientation and two pulse severities (1 g and 2.5 g) on each test day. A Vicon motion capture system was used to quantify the three-dimensional (3D) kinematics of the volunteers. Peak forward excursions of select body locations were compared within a test day and between test days for the same test condition to determine if and how acclimation occurred. Differences between demographic groups were also compared after accounting for any observed acclimation. Acclimation was not observed within a test day but was observed between test days for some demographic groups and some test conditions. In general, head, neck, and shoulder responses were affected, but the elbow, hip, and knee responses were not. Males generally moved farther forward compared to females during the frontal tests, but both groups moved forward similarly during the frontal-oblique tests. Overall, this study provides new female and male biomechanical data that can be used to further develop and validate HBMs that incorporate active musculature in order to better understand and assess occupant response and injury risk in pre-crash events and frontal crashes.


Sign in / Sign up

Export Citation Format

Share Document