Analytical and experimental studies on wear in spur gear running in dry condition

2021 ◽  
pp. 1-30
Author(s):  
Sudhagar Selvam ◽  
L Bhaskara Rao

Abstract This study was performed to measure the extent of wear of unlubricated spur gears on the involute tooth. Contacts that roll and slide normally undergo wear. When material removal occurs due to surface wear from the gear profile, the surface pressure in the gear profile is redistributed. A mathematical model for predicting wear and wear pattern in spur gear has been developed. The prediction is based on wear rate equation, load shared by the tooth in single-pair contact zone and double-pair contact zone. The distribution of the contact pressure was determined using the Hertzian cylindrical contact theory. For determining the sliding distance of the gears, the two-point observation method (TPOM) was used. Sliding distance at pitch point of gear and pinion was zero, because theoretically at pitch point, both zero sliding and pure rolling occur. The pin on the wear test method was used to obtain the wear rate on the material and simplified to the time of measurement on the gear wear. Taguchi's method for design of experiment was used, which significantly reduced experimental time with less experiment.

Author(s):  
L. J. Yang

Wear rates obtained from different investigators could vary significantly due to lack of a standard test method. A test methodology is therefore proposed in this paper to enable the steady-state wear rate to be determined more accurately, consistently, and efficiently. The wear test will be divided into four stages: (i) to conduct the transient wear test; (ii) to predict the steady-state wear coefficient with the required sliding distance based on the transient wear data by using Yang’s second wear coefficient equation; (iii) to conduct confirmation runs to obtain the measured steady-state wear coefficient value; and (iv) to convert the steady-state wear coefficient value into a steady-state wear rate. The proposed methodology is supported by wear data obtained previously on aluminium based matrix composite materials. It is capable of giving more accurate steady-state wear coefficient and wear rate values, as well as saving a lot of testing time and labour, by reducing the number of trial runs required to achieve the steady-state wear condition.


Author(s):  
Manu Sam ◽  
N Radhika ◽  
Katru Pavan Sai

LM25 aluminum alloy reinforced with 10 wt% of TiB2, WC, and ZrO2 were squeeze cast to investigate the effect of T6 heat treatment on tribo-mechanical properties. Among all, WC-reinforced composite achieved superior mechanical properties at the aging time of 8 h. Microstructural examination performed on all composites and alloy concluded that the presence of WC in T6 LM25 caused reduction of α-Al dendrite size, exhibiting superior properties for this composite. X-ray diffraction analysis conducted on alloy and WC-reinforced superior composite revealed formations of phases, which improved their mechanical properties. Energy-dispersive X-ray spectroscopy analysis quantified the actual intensity of WC presence in the superior composite along with its other constituents. Response surface methodology model developed for wear test of the superior composite involves parametric range like applied load (10–50 N), sliding velocity (1–4 m/s), and sliding distance (500–2500 m). Analysis of variance along with regression analysis proved that, statistical analytical model developed good relationship between the actual wear rate and process parameters. Response surface plots represented the linearly increasing wear trend with respect to load and sliding distance. Wear rate dropped initially and raised later on along with velocity. Scanning electron microscopy exhibited the surface deformation prevailing on the composite surface at high load.


2021 ◽  
Vol 2021 ◽  
pp. 1-15 ◽  
Author(s):  
B. Stalin ◽  
M. Ravichandran ◽  
Alagar Karthick ◽  
M. Meignanamoorthy ◽  
G. T. Sudha ◽  
...  

Copper (Cu) metal matrix composite (MMC) was developed with multiwall carbon nanotubes (MWCNT) as reinforcement by using powder metallurgy (PM) technique. The composition of the composites is Cu, Cu-4 wt% MWCNT, Cu-8 wt% MWCNT, and Cu-12 wt% MWCNT. The Cu and MWCNTs were blended for 6 hours in a ball mill and compacted at a 6 ton pressure to form green compacts using a 10 ton hydraulic press. Using a tubular furnace, the heat was applied at 900°C for 1.5 hours to impart strength and integrity to the green compacts. Milled composite blends were studied to analyze its characterization through SEM and EDAX analysis. Characterization studies such as SEM and EDAX confirm the presence and even dispersion of Cu and MWCNT constituents. The relative density, hardness, and ultimate compressive strength have been studied, and a remarkable improvement in properties has been obtained by the inclusion of MWCNTs. The composites reinforced by 8 and 12 wt% MWCNT were recorded with low thermal conductivity than the Cu composite reinforced by 4 wt% MWCNT. A wear study was analyzed using Taguchi technique for determining the effect caused by the wear test parameters and MWCNT content on wear rate. The optimized parameter that contributes minimum wear rate was identified as 12 wt% MWCNT content, 10 N applied load, 2 m/s sliding velocity, and 500 m sliding distance. Based on the obtained results, it could be understood that the produced composites can be utilized for various applications like relay contact springs and switchgear, rotor bars, and bus bars.


2017 ◽  
Vol 140 (1) ◽  
Author(s):  
Parveen Kumar ◽  
M. F. Wani

Friction and wear properties of hypereutectic Al–25Si alloy were studied under dry and lubricated sliding conditions. Hypereutectic Al–25Si alloys were prepared by rapid solidification process (RSP) under the T6 condition. Experimental studies were conducted using a ball on disk type tribometer. The effect of the sliding distance and normal load on the friction and wear were investigated. The coefficient of friction (COF) remained stable with an increase in the sliding distance (250–1500 m) and decreased with an increase in the normal load (10–50 N), whereas the wear rate decreased with an increase in the sliding distance, and increased with the increase in the normal load up to 40 N and then attained a steady-state value under dry and lubricated sliding conditions. The improvements in COF and wear rate were mainly attributed to the morphology, size, and distribution of hypereutectic Si particles due to its fabrication process. Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), optical microscopy, and three-dimensional (3D)-surface profilometer were used for characterization of the wear tracks. The dominant wear mechanisms for a hypereutectic Al–25Si alloy were adhesive wear, abrasive wear, and plastic deformation.


2005 ◽  
Vol 290 ◽  
pp. 276-279
Author(s):  
Miriam Kupková ◽  
Martin Kupka ◽  
Emőke Rudnayová ◽  
Ján Dusza

Irregular evolution of friction coefficient, recorded during the ball-on-disc test on Si3N4 based ceramic materials, was analysed by means of fractal geometry methods. Tests were carried out at room temperature, in air and without any lubricant. It was proven that the friction coefficient trace, considered as a geometric object, has the property of a fractal curve. The fractal dimension of this curve increased with increasing wear rate measured in a corresponding wear test. This could indicate the possible correlation between the wear rate and the fractal dimension of friction coefficient as a function of sliding distance (time).


2019 ◽  
Vol 969 ◽  
pp. 110-115
Author(s):  
B. Venkatesh ◽  
S. Nagakalyan

The Al2014 alloy is extensively used as a structural material in aerospace industry and also it is proving to fit as wear resistant materials especially in sliding wear applications. In the present paper, the wear analysis of hybrid Al-MMCs utilising Al2014 alloy as matrix and Silicon carbide (SiC) / Graphite (Gr) particulate reinforcements was studied by changing load, speed and percentage reinforcement. Al2014+10%SiC composites and Al2014/(5%SiC+5%Gr) were prepared using liquid state processing. The wear test is carried out by using pin on disc with sliding speeds range from 0.84-1.67m/s and loads from 25-75N and sliding distance of 1000m.The outcomes demonstrated that the connected load had positive effect on wear rate while sliding rate indicates reverse movement on wear rate. The incorporation of SiC and Gr is observed to be significant on account of self-lubricating impact of Gr and resistance to material plastic flow due to SiC reinforcement.


2006 ◽  
Vol 128 (4) ◽  
pp. 725-734 ◽  
Author(s):  
L. J. Yang

A new equation has been formulated and found successful for modeling the wear rate of test specimens. It is capable of predicting the standard steady-state wear rate and the net steady-state wear rate with a FA value, an exponential function, of 0.99 and 0.999, respectively; and with deviations of about 19% and 36%, respectively. A methodology has also been proposed in this paper to enable the steady-state wear rate to be determined more accurately, consistently, and efficiently. The wear test will be divided into three stages: (i) To conduct the transient wear test; (ii) to predict the steady-state wear rate with the required sliding distance based on the transient wear data by using the new equation; (iii) to conduct confirmation runs to obtain the measured steady-state wear rate. The proposed methodology is supported by wear data obtained previously on aluminium based matrix composite materials. It is capable of giving more accurate steady-state wear rates, as well as saving a lot of testing time and labor, by reducing the number of trial runs required to achieve the steady-state wear condition. It will also give more consistent results since a common FA value will be used.


2020 ◽  
Vol 9 (1) ◽  
pp. 57-67
Author(s):  
I Kadek Darmadi Adiyasa ◽  
I Made Sutama ◽  
Ida Bagus Putrayasa

The classroom action research conducted at class X IPB1 in SMA Negeri 1 Susut aimed to (1) To describe the steps in implementing e-Learning based learning in writing the exposition text of class X IPB1 at SMA Negeri 1 Susut. (2) Describe student achievements after implementing e-Learning in exposition text of class X IPB1 in SMA Negeri 1 Susut, and (3) Describe student responses after applying e-learning in writing text exposition of class X IPB1 in SMA Negeri 1 Susut. This research was conducted in two cycles in which consisted of five stages, namely: planning, implementing, observing, evaluating, and reflecting. Data were collected by observation method, interview method, test method, questionnaire method and analyzed descriptively quantitative and qualitative. The results showed the average value of the first cycle was 72.6 or an increase of 17.05% from the previous value (pre-cycle) 37. The value of the second cycle was 81.1 or an increase of 43.4%. The acquisition of the average response of students in the first cycle of 33.7% in the very positive category and increased in the second cycle of student responses to 33.96 in the very positive category. The conclusions in this study were (1) learning steps based on e-Learning based on basic competency standards and according to procedures that have been designed. (2) e-Learning can improve student achievement in writing exposition texts. (3) students' responses to e-Learning are very positive. The suggestion of this research is that teachers should use e-learning to improve student achievement.


Author(s):  
Ravi Datt Yadav ◽  
Anant Kumar Singh ◽  
Kunal Arora

Fine finishing of spur gears reduces the vibrations and noise and upsurges the service life of two mating gears. A new magnetorheological gear profile finishing (MRGPF) process is utilized for the fine finishing of spur gear teeth profile surfaces. In the present study, the development of a theoretical mathematical model for the prediction of change in surface roughness during the MRGPF process is done. The present MRGPF is a controllable process with the magnitude of the magnetic field, therefore, the effect of magnetic flux density (MFD) on the gear tooth profile has been analyzed using an analytical approach. Theoretically calculated MFD is validated experimentally and with the finite element analysis. To understand the finishing process mechanism, the different forces acting on the gear surface has been investigated. For the validation of the present roughness model, three sets of finishing cycle experimentations have been performed on the spur gear profile by the MRGPF process. The surface roughness of the spur gear tooth surface after experimentation was measured using Mitutoyo SJ-400 surftest and is equated with the values of theoretically calculated surface roughness. The results show the close agreement which ranges from −7.69% to 2.85% for the same number of finishing cycles. To study the surface characteristics of the finished spur gear tooth profile surface, scanning electron microscopy is used. The present developed theoretical model for surface roughness during the MRGPF process predicts the finishing performance with cycle time, improvement in the surface quality, and functional application of the gears.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3074
Author(s):  
Kaveh Torkashvand ◽  
Vinod Krishna Selpol ◽  
Mohit Gupta ◽  
Shrikant Joshi

Sliding wear performance of thermal spray WC-based coatings has been widely studied. However, there is no systematic investigation on the influence of test conditions on wear behaviour of these coatings. In order to have a good understanding of the effect of test parameters on sliding wear test performance of HVAF-sprayed WC–CoCr coatings, ball-on-disc tests were conducted under varying test conditions, including different angular velocities, loads and sliding distances. Under normal load of 20 N and sliding distance of 5 km (used as ‘reference’ conditions), it was shown that, despite changes in angular velocity (from 1333 rpm up to 2400 rpm), specific wear rate values experienced no major variation. No major change was observed in specific wear rate values even upon increasing the load from 20 N to 40 N and sliding distance from 5 km to 10 km, and no significant change was noted in the prevailing wear mechanism, either. Results suggest that no dramatic changes in applicable wear regime occur over the window of test parameters investigated. Consequently, the findings of this study inspire confidence in utilizing test conditions within the above range to rank different WC-based coatings.


Sign in / Sign up

Export Citation Format

Share Document