Nonlinear oscillations of particle-reinforced electro-magneto-viscoelastomer actuators

2021 ◽  
pp. 1-19
Author(s):  
Aman Khurana ◽  
Deepak Kumar ◽  
Atul Kumar Sharma ◽  
Manish M. Joglekar

Abstract This work presents the dynamic modeling and analysis of a particle-reinforced and pre-stressed electro-magneto-viscoelastic plate actuator. The actuator belongs to a smart actuator category and is made of an electro-magneto-active polymer filled with a particular volume fraction of suitable fillers. An energy-based electro-magneto-viscoelastic model is developed to predict the actuator response and interrogate the impact of particle reinforcement on the dynamic oscillations of a pre-stressed condition of the actuator. An Euler–Lagrange equation of motion is implemented to deduce the governing dynamic equation of the actuator. The findings of the model solutions provide preliminary insights on the alteration of the nonlinear behavior of the actuator excited by DC and AC dynamic modes of actuation. It is observed that the enrichment in the particle reinforcement characterized by the amount of fillers strengthens the polymer and depleted the associated level of deformation. Also, the depletion in the intensity of oscillation and enhancement in the frequency of excitation is perceived with an increase in the particle reinforcement. In addition, the time-history response, Poincare plots and phase diagrams are also plotted to assess the stability, periodicity, beating phenomenon, and resonant behavior of the actuator. In general, the current study provides initial steps toward the modern actuator designs for various futuristic applications in the engineering and medical field.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Muhammad Ramzan ◽  
Jae Dong Chung ◽  
Seifedine Kadry ◽  
Yu-Ming Chu ◽  
Muhammad Akhtar

Abstract A mathematical model is envisioned to discourse the impact of Thompson and Troian slip boundary in the carbon nanotubes suspended nanofluid flow near a stagnation point along an expanding/contracting surface. The water is considered as a base fluid and both types of carbon nanotubes i.e., single-wall (SWCNTs) and multi-wall (MWCNTs) are considered. The flow is taken in a Dacry-Forchheimer porous media amalgamated with quartic autocatalysis chemical reaction. Additional impacts added to the novelty of the mathematical model are the heat generation/absorption and buoyancy effect. The dimensionless variables led the envisaged mathematical model to a physical problem. The numerical solution is then found by engaging MATLAB built-in bvp4c function for non-dimensional velocity, temperature, and homogeneous-heterogeneous reactions. The validation of the proposed mathematical model is ascertained by comparing it with a published article in limiting case. An excellent consensus is accomplished in this regard. The behavior of numerous dimensionless flow variables including solid volume fraction, inertia coefficient, velocity ratio parameter, porosity parameter, slip velocity parameter, magnetic parameter, Schmidt number, and strength of homogeneous/heterogeneous reaction parameters are portrayed via graphical illustrations. Computational iterations for surface drag force are tabulated to analyze the impacts at the stretched surface. It is witnessed that the slip velocity parameter enhances the fluid stream velocity and diminishes the surface drag force. Furthermore, the concentration of the nanofluid flow is augmented for higher estimates of quartic autocatalysis chemical.


2021 ◽  
Vol 21 (2) ◽  
Author(s):  
Hadi Torkamani ◽  
Shahram Raygan ◽  
Carlos Garcia Mateo ◽  
Yahya Palizdar ◽  
Jafar Rassizadehghani ◽  
...  

AbstractIn this study, dual-phase (DP, ferrite + martensite) microstructures were obtained by performing intercritical heat treatments (IHT) at 750 and 800 °C followed by quenching. Decreasing the IHT temperature from 800 to 750 °C leads to: (i) a decrease in the volume fraction of austenite (martensite after quenching) from 0.68 to 0.36; (ii) ~ 100 °C decrease in martensite start temperature (Ms), mainly due to the higher carbon content of austenite and its smaller grains at 750 °C; (iii) a reduction in the block size of martensite from 1.9 to 1.2 μm as measured by EBSD. Having a higher carbon content and a finer block size, the localized microhardness of martensite islands increases from 380 HV (800 °C) to 504 HV (750 °C). Moreover, despite the different volume fractions of martensite obtained in DP microstructures, the hardness of the steels remained unchanged by changing the IHT temperature (~ 234 to 238 HV). Applying lower IHT temperature (lower fraction of martensite), the impact energy even decreased from 12 to 9 J due to the brittleness of the martensite phase. The results of the tensile tests indicate that by increasing the IHT temperature, the yield and ultimate tensile strengths of the DP steel increase from 493 to 770 MPa, and from 908 to 1080 MPa, respectively, while the total elongation decreases from 9.8 to 4.5%. In contrast to the normalized sample, formation of martensite in the DP steels could eliminate the yield point phenomenon in the tensile curves, as it generates free dislocations in adjacent ferrite.


2021 ◽  
Vol 13 (8) ◽  
pp. 4278
Author(s):  
Svetlana Tam ◽  
Jenna Wong

Sustainability addresses the need to reduce the structure’s impact on the environment but does not reduce the environment’s impact on the structure. To explore this relationship, this study focuses on quantifying the impact of green roofs or vegetated roofs on seismic responses such as story displacements, interstory drifts, and floor level accelerations. Using an archetype three-story steel moment frame, nonlinear time history analyses are conducted in OpenSees for a shallow and deep green roof using a suite of ground motions from various distances from the fault to identify key trends and sensitivities in response.


Author(s):  
Paulo Roberto Arruda Zantut ◽  
Mariana Matera Veras ◽  
Sarah Gomes Menezes Benevenutto ◽  
Angélica Mendonça Vaz Safatle ◽  
Ricardo Augusto Pecora ◽  
...  

Abstract Background Prenatal exposure to Cannabis is a worldwide growing problem. Although retina is part of the central nervous system, the impact of maternal Cannabis use on the retinal development and its postnatal consequences remains unknown. As the prenatal period is potentially sensitive in the normal development of the retina, we hypothesized that recreational use of Cannabis during pregnancy may alter retina structure in the offspring. To test this, we developed a murine model that mimics human exposure in terms of dose and use. Methods Pregnant BalbC mice were exposed daily for 5 min to Cannabis smoke (0.2 g of Cannabis) or filtered air, from gestational day 5 to 18 (N = 10/group). After weaning period, pups were separated and examined weekly. On days 60, 120, 200, and 360 after birth, 10 pups from each group were randomly selected for Spectral Domain Optical Coherence Tomography (SD-OCT) analysis of the retina. All retina layers were measured and inner, outer, and total retina thickness were calculated. Other 37 mice from both groups were sacrificed on days 20, 60, and 360 for retinal stereology (total volume of the retina and volume fraction of each retinal layer) and light microscopy. Means and standard deviations were calculated and MANOVA was performed. Results The retina of animals which mother was exposed to Cannabis during gestation was 17% thinner on day 120 (young adult) than controls (P = 0.003) due to 21% thinning of the outer retina (P = 0.001). The offspring of mice from the exposed group presented thickening of the IS/OS in comparison to controls on day 200 (P < 0.001). In the volumetric analyzes by retinal stereology, the exposed mice presented transitory increase of the IS/OS total volume and volume fraction on day 60 (young adult) compared to controls (P = 0.008 and P = 0.035, respectively). On light microscopy, exposed mice presented thickening of the IS/OS on day 360 (adult) compared to controls (P = 0.03). Conclusion Gestational exposure to Cannabis smoke may cause structural changes in the retina of the offspring that return to normal on mice adulthood. These experimental evidences suggest that children and young adults whose mothers smoked Cannabis during pregnancy may require earlier and more frequent clinical care than the non-exposed population.


2018 ◽  
Vol 192 ◽  
pp. 02028
Author(s):  
Hassan Zulkifli Abu ◽  
Ibrahim Aniza ◽  
Mohamad Nor Norazman

Small-scale blast tests were carried out to observe and measure the influence of sandy soil towards explosive blast intensity. The tests were to simulate blast impact imparted by anti-vehicular landmine to a lightweight armoured vehicle (LAV). Time of occurrence of the three phases of detonation phase in soil with respect to upward translation time of the test apparatus were recorded using high-speed video camera. At the same time the target plate acceleration was measured using shock accelerometer. It was observed that target plate deformation took place at early stage of the detonation phase before the apparatus moved vertically upwards. Previous data of acceleration-time history and velocity-time history from air blast detonation were compared. It was observed that effects of soil funnelling on blast wave together with the impact from soil ejecta may have contributed to higher blast intensity that characterized detonation in soil, where detonation in soil demonstrated higher plate velocity compared to what occurred in air blast detonation.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
A. Shalwan ◽  
M. Alajmi ◽  
A. Alajmi

Using natural fibres in civil engineering is the aim of many industrial and academics sectors to overcome the impact of synthetic fibres on environments. One of the potential applications of natural fibres composites is to be implemented in insulation components. Thermal behaviour of polymer composites based on natural fibres is recent ongoing research. In this article, thermal characteristics of sisal fibre reinforced epoxy composites are evaluated for treated and untreated fibres considering different volume fractions of 0–30%. The results revealed that the increase in the fibre volume fraction increased the insulation performance of the composites for both treated and untreated fibres. More than 200% insulation rate was achieved at the volume fraction of 20% of treated sisal fibres. Untreated fibres showed about 400% insulation rate; however, it is not recommended to use untreated fibres from mechanical point of view. The results indicated that there is potential of using the developed composites for insulation purposes.


2006 ◽  
Vol 1 (4) ◽  
pp. 279-282 ◽  
Author(s):  
A. R. Champneys

This paper represents the author’s view on the impact of the book Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields by John Guckenheimer and Philip Holmes, first published in 1983 (Springer-Verlag, Berlin). In particular, the questions addressed are: if one were to write a similar book for the 21st century, which topics should be contained and what form should the book take in order to have a similar impact on the modern generation of young researchers in applied dynamical systems?


2017 ◽  
Vol 754 ◽  
pp. 309-312 ◽  
Author(s):  
Robert Jankowski

During severe earthquakes, pounding between adjacent superstructure segments of highway elevated bridges was often observed. It is usually caused by the seismic wave propagation effect and may lead to significant damage. The aim of the present paper is to show the results of the numerical analysis focused on damage-involved pounding between neighbouring decks of an elevated bridge under seismic excitation. The analysis was carried out using a lumped mass structural model with every deck element discretized as a SDOF system. Pounding was simulated by the use of impact elements which become active when contact is detected. The linear viscoelastic model of collision was applied allowing for dissipation of energy due to damage at the contact points of colliding deck elements. The results show that pounding may substantially modify the behaviour of the analysed elevated bridge. It may increase the structural response or play a positive role, and the response depends on pattern of collisions between deck elements. The results also indicate that a number of impacts for a small in-between gap size is large, whereas the value of peak pounding force is low. On the other hand, the pounding force time history for large gap values shows only a few collisions, but the value of peak pounding force is substantially large, what may intensify structural damage.


2006 ◽  
Vol 129 (6) ◽  
pp. 697-704 ◽  
Author(s):  
A. G. Agwu Nnanna

This paper presents a systematic experimental method of studying the heat transfer behavior of buoyancy-driven nanofluids. The presence of nanoparticles in buoyancy-driven flows affects the thermophysical properties of the fluid and consequently alters the rate of heat transfer. The focus of this paper is to estimate the range of volume fractions that results in maximum thermal enhancement and the impact of volume fraction on Nusselt number. The test cell for the nanofluid is a two-dimensional rectangular enclosure with differentially heated vertical walls and adiabatic horizontal walls filled with 27 nm Al2O3–H2O nanofluid. Simulations were performed to measure the transient and steady-state thermal response of nanofluid to imposed isothermal condition. The volume fraction is varied between 0% and 8%. It is observed that the trend of the temporal and spatial evolution of temperature profile for the nanofluid mimics that of the carrier fluid. Hence, the behaviors of both fluids are similar. Results shows that for small volume fraction, 0.2⩽ϕ⩽2% the presence of the nanoparticles does not impede the free convective heat transfer, rather it augments the rate of heat transfer. However, for large volume fraction ϕ>2%, the convective heat transfer coefficient declines due to reduction in the Rayleigh number caused by increase in kinematic viscosity. Also, an empirical correlation for Nuϕ as a function of ϕ and Ra has been developed, and it is observed that the nanoparticle enhances heat transfer rate even at a small volume fraction.


2000 ◽  
Author(s):  
Toby D. Rule ◽  
Ben Q. Li ◽  
Kelvin G. Lynn

Abstract CdZnTe single crystals for radiation detector and IR substrate applications must be of high quality and controlled purity. The growth of such crystals from a melt is very difficult due to the low thermal conductivity and high latent heat of the material, and the ease with which dislocations, twins and precipitates are introduced during crystal growth. These defects may be related to solute transport phenomena and thermal stresses associated with the solidification process. As a result, production of high quality material requires excellent thermal control during the entire growth process. A comprehensive model is being developed to account for radiation and conduction within the furnace, thermal coupling between the furnace and growth crucible, and finally the thermal stress fields within the growing crystal which result from the thermal conditions imposed on the crucible. As part of this effort, the present work examines the heat transfer and fluid flow within the crucible, using thermal boundary conditions obtained from experimental measurements. The 2-D axisymetric numerical model uses the deforming finite element method, with allowance made for melt convection, solidification with latent heat release and conjugate heat transfer between the solid material and the melt. Results are presented for several stages of growth, including a time-history of the solid-liquid interface (1365 K isotherm). The impact of melt convection, thermal end conditions and furnace temperature gradient on the growth interface is evaluated. Future work will extend the present model to include radiation exchange within the furnace, and a transient analysis for studying solute transport and thermal stress.


Sign in / Sign up

Export Citation Format

Share Document