Evaluating the Reliability of Passive Server Components for Single-Phase Immersion Cooling

Author(s):  
Jimil M. Shah ◽  
Keerthivasan Padmanaban ◽  
Hrishabh Singh ◽  
Surya Duraisamy Asokan ◽  
Satyam Saini ◽  
...  

Abstract The adoption of Single-phase Liquid Immersion Cooling (Sp-LIC) for Information Technology equipment provides an excellent cooling platform coupled with significant energy savings. There are, however, very limited studies related to the reliability of such cooling technology. The Accelerated Thermal Cycling (ATC) test given ATC JEDEC is relevant just for air cooling but there is no such standard for immersion cooling. The ASTM benchmark D3455 with some appropriate adjustments was adopted to test the material compatibility because of the air and dielectric fluid differences in the heat capacitance property and corresponding ramp rate during thermal cycling. For this study, accelerated thermal degradation of the printed circuit board (PCB), passive components, and fiber optic cables submerged in air, white mineral oil, and synthetic fluid at a hoisted temperature of 45C and 35% humidity is undertaken. This paper serves multiple purposes including designing experiments, testing and evaluating material compatibility of PCB, passive components, and optical fibers in different hydrocarbon oils for single-phase immersion cooling. Samples of different materials were immersed in different hydrocarbon oils and air and kept in an environmental chamber at 45C for a total of 288 hours. Samples were then evaluated for their mechanical and electrical properties using Dynamic Mechanical Analyzer (DMA) and a multimeter, respectively. The cross-sections of some samples were also investigated for their structural integrity using SEM. The literature gathered on the subject and quantifiable data gathered by the authors provide the primary basis for this research document.

2012 ◽  
Vol 2012 (1) ◽  
pp. 000581-000590
Author(s):  
Roy W. Knight ◽  
Seth Fincher ◽  
Sushil H. Bhavnani ◽  
Daniel K. Harris ◽  
R. Wayne Johnson

Immersion, single phase free convection cooling of multichip modules on a printed circuit board in a pool of dielectric fluid was examined numerically, with experimental verification of baseline cases. A multi-chip module with multiple thermal test cells with temperature sensing capability was simulated. The commercially available computational fluid dynamics program from ANSYS, Fluent, was used with the electronics packaging front end, Icepak, employed to create the models and compact conduction modules. Simulations were first performed of an experimental test vehicle which had five 18 mm by 18 mm die, arranged in a cross pattern, equally spaced die, 25 mm between them. Two of the die were aligned vertically with the center die, two aligned horizontally with it. The board was suspended vertically in a large pool of dielectric fluid. Heat was dissipated in the die at a flux of up to 2 W/cm2, based on the die surface area. Simulation results were compared with experimentally measured die temperature values and excellent agreement was seen for the cases of one die heated and all five die uniformly heated with the board cooled by FC-72. A numerical parametric study was performed to examine the effect of die size and spacing on temperature rise. In addition to FC-72, immersion cooling in Novec 649 and HFE 7100 were modeled. Design guidelines are suggested for dielectric fluid immersion cooled multichip modules.


Author(s):  
Dhruvkumar Gandhi ◽  
Uschas Chowdhury ◽  
Tushar Chauhan ◽  
Pratik Bansode ◽  
Satyam Saini ◽  
...  

Abstract Complete immersion of servers in synthetic dielectric fluids is rapidly becoming a popular technique to minimize the energy consumed by data centers for cooling purposes. In general, immersion cooling offers noteworthy advantages over conventional air-cooling methods as synthetic dielectric fluids have high heat dissipation capacities which are roughly about 1200 times greater than air. Other advantages of dielectric fluid immersion cooling include even thermal profile on chips, reduction in noise and addressing reliability and operational enhancements like whisker formation and electrochemical migration. Nevertheless, lack of data published and availability of long-term reliability data on immersion cooling is insufficient which makes most of data centers operators reluctant to implement this technique. The first part of this paper will compare thermal performance of single-phase oil immersion cooled HP ProLiant DL160 G6 server against air cooled server using computational fluid dynamics on 6SigmaET®. Focus of the study are major components of the server like Central Processing Unit (CPU), Dual in Line Memory Module (DIMM), Input/output Hub (IOH) chip and Input/output controller Hub (ICH). The second part of this paper focuses on thermal performance optimization of oil immersion cooled servers by varying inlet oil temperature, flow rate and using different fluid.


2019 ◽  
Vol 141 (2) ◽  
Author(s):  
Jimil M. Shah ◽  
Richard Eiland ◽  
Pavan Rajmane ◽  
Ashwin Siddarth ◽  
Dereje Agonafer ◽  
...  

The improved efficiency of mineral oil may offer simplicity in facility design compared to traditional air cooling and provide a means for cost savings. Despite its improved cooling efficiency and cost savings, a mineral oil immersion cooling technique is still not widely implemented and original equipment manufacturers are reluctant to jeopardize sales of existing air-based cooling system equipment. Only compelling physics regarding thermal performance of direct immersion cooling is not enough for data center operators. Many uncertainties and concerns persist regarding the effects of mineral oil immersion cooling on the reliability of information technology (IT) equipment both at the component and chassis level. This paper is a first attempt at addressing this challenge by reviewing the changes in physical and chemical properties of IT equipment materials like polyvinyl chloride (PVC), printed circuit board (PCB), and capacitors and characterizes the interconnect reliability of materials. The changes in properties of a mineral oil like kinematic viscosity and dielectric strength are also cited as important factors and discussed briefly. The changes in mechanical properties like elasticity, hardness, swelling, and creep are being shown in the paper for thermoplastic materials. The chemical reaction between material and mineral oil as a function of time and temperature is also conferred. The literature gathered on the subject and quantifiable data gathered by the authors provide the primary basis for this research document.


Author(s):  
O. Crépel ◽  
Y. Bouttement ◽  
P. Descamps ◽  
C. Goupil ◽  
P. Perdu ◽  
...  

Abstract We developed a system and a method to characterize the magnetic field induced by circuit board and electronic component, especially integrated inductor, with magnetic sensors. The different magnetic sensors are presented and several applications using this method are discussed. Particularly, in several semiconductor applications (e.g. Mobile phone), active dies are integrated with passive components. To minimize magnetic disturbance, arbitrary margin distances are used. We present a system to characterize precisely the magnetic emission to insure that the margin is sufficient and to reduce the size of the printed circuit board.


Author(s):  
Norman J. Armendariz ◽  
Carolyn McCormick

Abstract Via in pad PCB (Printed Circuit board) technology for passive components such as chip capacitors and resistors, provides the potential for improved signal routing density and reduced PCB area. Because of these improvements there is the potential for PCB cost reduction as well as gains in electrical performance through reduced impedance and inductance. However, not long after the implementation, double digit unit failures for solder joint electrical opens due to capacitor “tombstoning” began to occur. Failure modes included via fill material (solder mask) protrusion from the via as well as “out gassing” and related “tombstoning.” This failure analysis involved investigating a strong dependence on PCB supplier and, less obviously, manufacturing site. Other factors evaluated included via fill material, drill size, via fill thermal history and via fill amount or fill percent. The factor most implicated was incomplete cure of the via fill material. Previous thermal gravimetric analysis methods to determine level of polymerization or cure did not provide an ability to measure and demonstrate via fill cure level in small selected areas or its link to the failures. As a result, there was a metrology approach developed to establish this link and root-cause the failures in the field, which was based on microhardness techniques and noncontact via fill measuring metrologies.


2012 ◽  
Vol 2012 (DPC) ◽  
pp. 001096-001114
Author(s):  
Michael R. Whitley ◽  
Tracy D. Hudson

The increased usage of unmanned aerial vehicles has driven the desire for smaller and lighter missile bodies. The wiring harnesses required to connect the missile subsystems constitute a significant portion of the missile weight and cost. We have been exploring the development of flexible electronics substrates manufactured using ink jet technology on polyimide films. This technology has an advantage over traditional flex circuit manufacturing because in addition to creating traditional wiring patterns the ink jet technology enables the creation of passive components such as resistors and capacitors. The Dimatix DMP-2831 ink jet system uses individually controllable piezoelectric driven MEMS nozzles to precisely deposit nanoparticle inks. These inks are then annealed to form wiring patterns. We will present the process for converting traditional printed circuit board data formats to inkjet printable data, the process for depositing the ink, annealing and testing.


2018 ◽  
Vol 15 (4) ◽  
pp. 148-162 ◽  
Author(s):  
John Lau ◽  
Ming Li ◽  
Yang Lei ◽  
Margie Li ◽  
Iris Xu ◽  
...  

Abstract In this study, the reliability (thermal cycling and shock) performances of a fan-out wafer-level system-in-package (SiP) or heterogeneous integration with one large chip (5 × 5 mm), three small chips (3 ×3 mm), and four capacitors (0402) embedded in an epoxy molding compound package (10 × 10 mm) with two redistribution layers (RDLs) are experimentally determined. Emphasis is placed on the estimation of the Weibull life distribution, characteristic life, and failure rate of the solder joint and RDL of this package. The fan-out wafer-level packaging is assembled on a printed circuit board (PCB) with more than 400 (Sn3wt%Ag0.5wt%Cu) solder joints. It is a six-layer PCB. The sample sizes for the thermal cycling test and shock test are, respectively, equal to 60 and 24. The failure location and modes of the thermal cycling test and shock test of the fan-out wafer-level SiP solder joints and RDLs are provided and discussed. 3-D nonlinear finite element models are also constructed and analyzed for the fan-out heterogeneous integration package during thermal cycling and shock conditions. The simulation results are correlated to the experimental results. Finally, recommendations on improving the fan-out wafer-level SiP solder joints and RDLs under thermal and shock conditions are provided.


Author(s):  
Jimil M. Shah ◽  
Ravya Dandamudi ◽  
Chinmay Bhatt ◽  
Pranavi Rachamreddy ◽  
Pratik Bansode ◽  
...  

Abstract In today’s networking world, utilization of servers and data centers has been increasing significantly. Increasing demand of processing and storage of data causes a corresponding increase in power density of servers. The data center energy efficiency largely depends on thermal management of servers. Currently, air cooling is the most widely used thermal management technology in data centers. However, air cooling has started to reach its limits due to high-powered processors. To overcome these limitations of air cooling in data centers, liquid immersion cooling methods using different dielectric fluids can be a viable option. Thermal shadowing is an effect in which temperature of a cooling medium increases by carrying heat from one source and results in decreasing its heat carrying capacity due to reduction in the temperature difference between the maximum junction temperature of successive heat sink and incoming fluid. Thermal Shadowing is a challenge for both air and low velocity oil flow cooling. In this study, the impact of thermal shadowing in a third-generation open compute server using different dielectric fluids is compared. The heat sink is a critical part for cooling effectiveness at server level. This work also provides an efficient range of heat sinks with computational modelling of third generation open compute server. Optimization of heat sink can allow to cool high-power density servers effectively for single-phase immersion cooling applications. A parametric study is conducted, and significant savings in the volume of a heat sink have been reported.


Author(s):  
Vasudivan Sunappan ◽  
Chee Wai Lu ◽  
Lai Lai Wai ◽  
Wei Fan ◽  
Boon Keng Lok

A novel process has been developed to embed discrete (surface mountable) passive components like capacitors, resistors and inductors using printed circuit board fabrication technology. The process comprises of mounting passive components on top surface of a core PCB (printed circuit board) material using surface mount technology. The passive components mounting were designed in multiple clusters within the PCB. Dielectric sheets are sandwiched between top surface of core PCB and second PCB material for lamination process. A direct interconnection of the passive components to one or more integrated circuits (IC) is further accomplished by mounting the ICs on the bottom surface of the core material in an area directly under the passive components. The close proximity of the embedded passive components such as capacitors to an IC improved electrical performance by providing impedance reduction and resonance suppression at high frequency range. The reliability of solder joints was evaluatedd by temperature cycling test.


Sign in / Sign up

Export Citation Format

Share Document