Full-scale dynamometer tests of composite railway brake shoes: Effect of the resin-rubber ratio on friction performance and wear

2021 ◽  
pp. 1-16
Author(s):  
Pablo Monreal ◽  
Neil Harrison ◽  
Eduardo Perez-Costarrosa ◽  
Miguel Zugasti ◽  
Alberto Madariaga ◽  
...  

Abstract Designing a friction material for a brake system entails considering the effects of each constituent and the interactions that they may present between them. In the present work, a characterization of the influence of the resin-rubber ratio in a brake block material is carried out. Railway brake shoes were produced and tested in a full-scale railway dynamometer in demanding conditions. The brake blocks had also their physical and mechanical properties tested. The progressive addition of resin was proven to heavily affect the friction level in dry and wet conditions. Interestingly, the use of 5% of resin showed significantly higher friction in wet conditions. This composition also presented more severe metal pick-up. The nature of the binder also affected wear rates (which were lower for lower resin contents), and the wear mechanism. The sample using only rubber presented thermal cracks and heavier delamination as specific failure modes. Differences on the microstructure of the friction materials were observed depending on the binder. A 5% of resin appears as a very interesting choice to avoid friction loss in wet environments without incurring in high wear rates, as long as metal pick-up is by different means diminished. Otherwise, a 100% of rubber as a binder grants the instantaneous friction stability that is often threaten by thermal fade.

2011 ◽  
Vol 311-313 ◽  
pp. 473-476
Author(s):  
Jian Hua Du ◽  
Jian Guo Han ◽  
Cheng Fa Xu

The Cu-based friction materials with nano-AlN (n-AlN) and nano-graphite (n-C) were prepared by powder metallurgy technology, respectively. The microstructures and friction performance were studied through scanning electron microscope (SEM) and friction tester rig, respectively. The results indicate that the n-AlN and n-C particles can enhance the properties of Cu-based friction materials remarkably. Compared with the friction materials without any nanometer materials, the wear resistance of the friction materials with n-AlN and n-C has been improved by 25 % and 11 %, respectively. The heat resistance of the materials with n-AlN and n-C has been improved 18 % and 25 %, respectively. The n-AlN and n-C particles can reduce the abrasive wear and enhance the wear resistance of the Cu-based friction materials.


2021 ◽  
Vol 9 (2) ◽  
pp. 017-023
Author(s):  
Anak Agung Alit Triadi ◽  
Sujita Darmo

The purpose of the study is to determine the best composition variation of the fifth variation of the composition of the composite material against the wear test, hardness test, tensile test comparing values ​​ with the safety standards of the brake lining composite SAEJ 661. Making the specimens was performed by mixing the ingredients with a mixer for 15 minutes and then do the process of compaction, with a load of 4 tons and detained achieve holding time is desired, then dies (mould) are placed in the oven and do the sintering process at a temperature of 1500 C for 180 minutes and specimens removed from the mould, the process of finishing and testing. These test results show that the composition of the material that is on variation V best price obtained 96.575 HBN hardness, wear rates of 1,29x10-6 gr / (mm2.detik), and a tensile strength of 0.842 MPa, but the brake friction material not meet safety standards SAEJ brake 661.


2020 ◽  
Vol 21 (6) ◽  
pp. 613
Author(s):  
Amira Sellami ◽  
Nesrine Hentati ◽  
Mohamed Kchaou ◽  
Mohammad Asaduzzaman Chowdhury ◽  
Riadh Elleuch

Friction materials are composed of numerous ingredients which differ from nature and particles size. Each ingredient has its own impact on the mechanical and tribological behavior of the material. Brass ingredients have a great impact on the thermal gradient dissipation in the sliding contact between disc and brake pad material. In this research, the influence of different sizes and forms of brass ingredient was studied on the friction material behavior. The physical (density), mechanical (yield strength, young module) and thermal (thermal conductivity and specific heat) properties of the considered composites were characterized. Results proves that only physical and mechanical properties are sensitive to the changes in size and form of brass particles. The tribological behavior of the brake friction materials was also assessed using a pin-on-disc tribometer. The results show that bigger brass particles and their elongated shape allows it to be well embedded on the pad surface during braking application, and thus decreased wear rate . In contrast, the smaller particle decrease the friction stability and it rounded shape increase wear of the material since it tearing from the surface by abrasive wear.


2011 ◽  
Vol 694 ◽  
pp. 413-417
Author(s):  
Jian Hua Du ◽  
Yan Zang ◽  
Xiao Ying Zhu

The Cu-based friction materials with nano-AlN (n-AlN) particles were prepared by powder metallurgy technology. The friction performance of the friction materials was investigated through test rig. The microstructure and worn morphology were studied through scanning electron microscopy (SEM). The results indicate that the coefficient of the Cu-based friction materials with 0.75 wt % n-AlN is high and stable. Comparing with the traditional friction materials without n-AlN, the wear resistance and heat resistance of the friction materials with n-AlN has been improved by 25 % and 18 %, respectively. The n-AlN particles can reduced the abrasive wear and enhance the wear resistance of the Cu-based friction materials.


2011 ◽  
Vol 399-401 ◽  
pp. 1725-1728
Author(s):  
Yun Hai Ma ◽  
Bao Gang Wang ◽  
Sheng Long Shen ◽  
Xue Ying Geng ◽  
Hong Lei Jia ◽  
...  

In this experiment, the effects of hair fibers on friction and wear property, Rockwell hardness and impact strength of friction materials were examined. The results showed that friction coefficient increases and stabilizes and specific wear rates were decrease as the hair fibers were filled and, particularly, 1% of the hair fiber content had a significant effect in the friction material. As temperature was changed, the stability of the friction coefficient of friction materials can be improved, the Rockwell hardness decrease and the impact strengths increase by way of increasing the content of hair fibers. The worn surfaces of friction materials were examined by scanning electron microscopy and wear mechanisms were analyzed. So it’s a kind of quite good non-asbestos friction material.


2012 ◽  
Vol 557-559 ◽  
pp. 28-33
Author(s):  
Bai Ming Chen ◽  
Hua Li Yu ◽  
Liang An ◽  
Zheng Yu Zhang ◽  
Ming Xu Wang

The four kinds of Cu based friction materials with different micro-hardness were fabricated by sintering method, the Ti content of four kinds of Cu based friction material is 8%, 12%, 16% and 20%, respectively. The tribological properties were carried out on ring-to-block tester. The results show that the wear rates and the wear rates ratio of the pair and the friction material with lower micro-hardness were lower than that of friction material with higher micro-hardness, and lower wear rates ratio of pair and friction materials (WRRPF) is very helpful for protecting pair of friction materials.


2018 ◽  
Vol 12 (3) ◽  
pp. 204-208 ◽  
Author(s):  
Piotr Wasilewski

Abstract When designing or developing friction materials, it is crucial to predict how the modification of the formulation will affect their properties. Fibres are introduced in the composition of the phenolic-based brake friction materials to improve their mechanical strength. Apart from reinforcing the composite, fibres can also affect its tribological and thermophysical properties. In this study two composite friction materials are compared. The difference between the materials was the type of reinforcing fibre used in the formulation – in one case it was glass fibre, in the other steel fibre. Thermal diffusivity of both materials was measured and thermal conductivity was calculated. Frictional characteristics determined by means of full-scale dynamometer tests are analysed and discussed. Substitution of glass fibre with steel fibre led to increase in the friction coefficient. Maximum average temperature below wheel surface, observed during the test of the material containing steel fibre, was lower as compared to the test results of the material with glass fibre in its formulation, despite higher heat flux in the course of brake applications. Thermal conductivity of the friction material was enhanced by including steel fibre in the formulation.


2011 ◽  
Vol 284-286 ◽  
pp. 905-908 ◽  
Author(s):  
Jian Hua Du ◽  
Yuan Yuan Li ◽  
Xiao Hui Zheng

The Cu-based friction materials with nano-graphite were prepared through powder metallurgy technology. The microstructure and friction performance were studied through scan electronic microscope (SEM) and friction tester, respectively. The results indicate that coefficient of the Cu-based friction materials with 2 wt% nano-graphite is high and stable. Comparing with the friction materials without n-C, the wear resistance and heat resistance of the friction materials with nano-graphite has been improved by 11 % and 25 %, respectively. The nano-graphite particles will reduce the abrasive wear and enhance the wear resistance of the Cu-based friction materials.


2021 ◽  
Vol 871 ◽  
pp. 170-175
Author(s):  
Hao Li ◽  
Bo He

To prepare a kind of Fe-Cu-based friction material with good friction performance and wear resistance, and apply it to the brake structure of automobile machinery, the powder metallurgy method is used to prepare the friction materials in the standard with 4% Ni, 4% Mo and 2% Sn as the auxiliary material, SiC, Al2O3, and zircon sand as the basic friction material, 8% graphite and 3% MoS2 as the lubricating component. Meanwhile, 50% Fe and 20% Cu is used for the preparation of friction materials. The friction and wear resistance can be increased by increasing the carbon fiber content of 0-8% concentration of the material. The results show that the friction coefficient of the Fe-Cu-based friction material is relatively gentle after the addition of 2% carbon fiber, and the compactness peaks, reaching 93.3%. Its shear strength and impact strength peak, which are 37.42Mpa and 6.7J/cm2 respectively. 4% carbon fiber material with a hardness of 120.2 HV is the hardest one, followed by 2% carbon fiber material with a hardness of 118.1 HV. Added with 2% carbon fiber, the abrasion amount of the friction-based material is 0.0027 g at room temperature and-0.0008 g at 400°C after 60 minutes respectively. With all indicators considered, the result shows that the friction performance and wear resistance of Fe-Cu-based friction materials can be increased by adding 2% carbon fiber during the preparation of basic friction materials.


1995 ◽  
Vol 117 (2) ◽  
pp. 272-278 ◽  
Author(s):  
Takayuki Matsumoto

The friction performance and thermal resistance of paper-based oil immersed friction materials are influenced by the material structure formed as a result of the combination of porosity and resiliency. In this paper, the effects of porosity on the thermal durability of paper-based friction materials were studied, of which the contents are varied but the geometries are the same as used in real applications. The relationship between the degree of carbonization and the durability was discussed in several terms of mechanical property changes of the material. The friction and thermal durability tests were conducted by using an SAE No. 2 apparatus under a repeated engage-disengagement condition. To obtain the thermal durability performance the sliding surface temperature was also measured. Coefficients of friction of the low porosity material tend to decrease as the test cycle increases. And the total thickness loss of the low porosity material after durability test is bigger than that of the high porosity material. These durability performances were well correlated with the mechanical and physical property changes of the material, that is, variations of carbonization degree, permeability and hysteresis loss energy.


Sign in / Sign up

Export Citation Format

Share Document