Gas Turbine Application Over Thirty Years in a Middle East Oil Production Facility

Author(s):  
Patrick J. Norris ◽  
John Cunningham

Kuwait Oil Company (KOC) has installed and operated gas turbines since 1957. There are currently 79 Gas Turbines ranging in size from 700 to 33,000 H.P. of various types, from industrial to aero-derivative. Gas turbines provide more than half a million in horsepower, which is more than 80% of the power, for machinery and power generation at KOC. This paper covers the introduction and the rappid growth of gas turbine power at KOC. Operational sites at KOC are subject to severe heat, dust and humidity. The experience in the operation and maintenance in the early years of the gas turbines at KOC are described. Gas turbines have played a major role in the success of the Company.

Author(s):  
Ihor Diakunchak ◽  
Hans Juergen Kiesow ◽  
Gerald McQuiggan

Siemens gas turbine history can be traced back to the early years of World War II. The Westinghouse aero jet engine (J 30) and the Junkers JUMO 004 jet engine were the basis for the industrial gas turbines designed and manufactured by Westinghouse and Siemens / Kraftwerk-Union since World War II. KWU was formed in 1969 as a joint venture of AEG and Siemens and became wholly owned by Siemens in 1977. AEG worked with Junkers on the development of the Jumo 004 jet engine during the War. Westinghouse Power Generation was purchased by Siemens in 1998. This paper examines the history of those early gas turbines and traces the evolution of the modern Siemens gas turbine from that time. Details are also given of the latest Siemens gas turbine to enter into operation, the 340MW SGT5-8000H.


Author(s):  
Elliot Sullivan-Lewis ◽  
Vincent McDonell

Lean-premixed gas turbines are now common devices for low emissions stationary power generation. By creating a homogeneous mixture of fuel and air upstream of the combustion chamber, temperature variations are reduced within the combustor, which reduces emissions of nitrogen oxides. However, by premixing fuel and air, a potentially flammable mixture is established in a part of the engine not designed to contain a flame. If the flame propagates upstream from the combustor (flashback), significant engine damage can result. While significant effort has been put into developing flashback resistant combustors, these combustors are only capable of preventing flashback during steady operation of the engine. Transient events (e.g., auto-ignition within the premixer and pressure spikes during ignition) can trigger flashback that cannot be prevented with even the best combustor design. In these cases, preventing engine damage requires designing premixers that will not allow a flame to be sustained. Experimental studies were conducted to determine under what conditions premixed flames of hydrogen and natural gas can be anchored in a simulated gas turbine premixer. Tests have been conducted at pressures up to 9 atm, temperatures up to 750 K, and freestream velocities between 20 and 100 m/s. Flames were anchored in the wakes of features typical of premixer passageways, including cylinders, steps, and airfoils. The results of this study have been used to develop an engineering tool that predicts under what conditions a flame will anchor, and can be used for development of flame anchoring resistant gas turbine premixers.


Author(s):  
Matti Malkamäki ◽  
Ahti Jaatinen-Värri ◽  
Antti Uusitalo ◽  
Aki Grönman ◽  
Juha Honkatukia ◽  
...  

Decentralized electricity and heat production is a rising trend in small-scale industry. There is a tendency towards more distributed power generation. The decentralized power generation is also pushed forward by the policymakers. Reciprocating engines and gas turbines have an essential role in the global decentralized energy markets and improvements in their electrical efficiency have a substantial impact from the environmental and economic viewpoints. This paper introduces an intercooled and recuperated three stage, three-shaft gas turbine concept in 850 kW electric output range. The gas turbine is optimized for a realistic combination of the turbomachinery efficiencies, the turbine inlet temperature, the compressor specific speeds, the recuperation rate and the pressure ratio. The new gas turbine design is a natural development of the earlier two-spool gas turbine construction and it competes with the efficiencies achieved both with similar size reciprocating engines and large industrial gas turbines used in heat and power generation all over the world and manufactured in large production series. This paper presents a small-scale gas turbine process, which has a simulated electrical efficiency of 48% as well as thermal efficiency of 51% and can compete with reciprocating engines in terms of electrical efficiency at nominal and partial load conditions.


Author(s):  
Mark A. Paisley ◽  
Donald Anson

The Biomass Power Program of the US Department of Energy (DOE) has as a major goal the development of cost-competitive technologies for the production of power from renewable biomass crops. The gasification of biomass provides the potential to meet his goal by efficiently and economically producing a renewable source of a clean gaseous fuel suitable for use in high efficiency gas turbines. This paper discusses the development and first commercial demonstration of the Battelle high-throughput gasification process for power generation systems. Projected process economics are presented along with a description of current experimental operations coupling a gas turbine power generation system to the research scale gasifier and the process scaleup activities in Burlington, Vermont.


Author(s):  
Wolfgang Kappis ◽  
Stefan Florjancic ◽  
Uwe Ruedel

Market requirements for the heavy duty gas turbine power generation business have significantly changed over the last few years. With high gas prices in former times, all users have been mainly focusing on efficiency in addition to overall life cycle costs. Today individual countries see different requirements, which is easily explainable picking three typical trends. In the United States, with the exploitation of shale gas, gas prices are at a very low level. Hence, many gas turbines are used as base load engines, i.e. nearly constant loads for extended times. For these engines reliability is of main importance and efficiency somewhat less. In Japan gas prices are extremely high, and therefore the need for efficiency is significantly higher. Due to the challenge to partly replace nuclear plants, these engines as well are mainly intended for base load operation. In Europe, with the mid and long term carbon reduction strategy, heavy duty gas turbines is mainly used to compensate for intermittent renewable power generation. As a consequence, very high cyclic operation including fast and reliable start-up, very high loading gradients, including frequency response, and extended minimum and maximum operating ranges are required. Additionally, there are other features that are frequently requested. Fuel flexibility is a major demand, reaching from fuels of lower purity, i.e. with higher carbon (C2+), content up to possible combustion of gases generated by electrolysis (H2). Lifecycle optimization, as another important request, relies on new technologies for reconditioning, lifetime monitoring, and improved lifetime prediction methods. Out of Alstom’s recent research and development activities the following items are specifically addressed in this paper. Thermodynamic engine modelling and associated tasks are discussed, as well as the improvement and introduction of new operating concepts. Furthermore extended applications of design methodologies are shown. An additional focus is set ono improve emission behaviour understanding and increased fuel flexibility. Finally, some applications of the new technologies in Alstom products are given, indicating the focus on market requirements and customer care.


Author(s):  
M. Sato ◽  
T. Abe ◽  
T. Ninomiya ◽  
T. Nakata ◽  
T. Yoshine ◽  
...  

From the view point of future coal utilization technology for the thermal power generation systems, the coal gasification combined cycle system has drawn special interest recently. In the coal gasification combined cycle power generation system, it is necessary to develop a high temperature gas turbine combustor using a low-BTU gas (LBG) which has high thermal efficiency and low emissions. In Japan a development program of the coal gasification combined cycle power generation system has started in 1985 by the national government and Japanese electric companies. In this program, 1300°C class gas turbines will be developed. If the fuel gas cleaning system is a hot type, the coal gaseous fuel to be supplied to gas turbines will contain ammonia. Ammonia will be converted to nitric oxides in the combustion process in gas turbines. Therefore, low fuel-NOx combustion technology will be one of the most important research subjects. This paper describes low fuel-NOx combustion technology for 1300°C class gas turbine combustors using coal gaseous low-BTU fuel as well as combustion characteristics and carbon monoxide emission characteristics. Combustion tests were conducted using a full-scale combustor used for the 150 MW gas turbine at the atmospheric pressure. Furthermore, high pressure combustion tests were conducted using a half-scale combustor used for the 1 50 MW gas turbine.


Author(s):  
Thomas Wagner ◽  
Robert J. Burke

The desire to maintain power plant profitability, combined with current market fuel gas pricing is forcing power generation companies to constantly look for ways to keep their industrial gas turbine units operating at the highest possible efficiency. Gas Turbines Operation requires the compression of very large quantities of air that is mixed with fuel, ignited and directed into a turbine to produce torque for purposes ranging from power generation to mechanical drive of pumping systems to thrust for air craft propulsion. The compression of the air for this process typically uses 60% of the required base energy. Therefore management of the compression process efficiency is very important to maintain overall cycle efficiency. Since fouling of turbine compressors is almost unavoidable, even with modern air filter treatment, and over time results in lower efficiency and output, compressor cleaning is required to maintain gas turbine efficiency.


Author(s):  
M. Huth ◽  
A. Heilos ◽  
G. Gaio ◽  
J. Karg

The Integrated Gasification Combined Cycle concept is an emerging technology that enables an efficient and clean use of coal as well as residuals in power generation. After several years of development and demonstration operation, now the technology has reached the status for commercial operation. SIEMENS is engaged in 3 IGCC plants in Europe which are currently in operation. Each of these plants has specific characteristics leading to a wide range of experiences in development and operation of IGCC gas turbines fired with low to medium LHV syngases. The worlds first IGCC plant of commercial size at Buggenum/Netherlands (Demkolec) has already demonstrated that IGCC is a very efficient power generation technology for a great variety of coals and with a great potential for future commercial market penetration. The end of the demonstration period of the Buggenum IGCC plant and the start of its commercial operation has been dated on January 1, 1998. After optimisations during the demonstration period the gas turbine is running with good performance and high availability and has exceeded 18000 hours of operation on coal gas. The air-side fully integrated Buggenum plant, equipped with a Siemens V94.2 gas turbine, has been the first field test for the Siemens syngas combustion concept, which enables operation with very low NOx emission levels between 120–600 g/MWh NOx corresponding to 6–30 ppm(v) (15%O2) and less than 5 ppm(v) CO at baseload. During early commissioning the syngas nozzle has been recognised as the most important part with strong impact on combustion behaviour. Consequently the burner design has been adjusted to enable quick and easy changes of the important syngas nozzle. This design feature enables fast and efficient optimisations of the combustion performance and the possibility for easy adjustments to different syngases with a large variation in composition and LHV. During several test runs the gas turbine proved the required degree of flexibility and the capability to handle transient operation conditions during emergency cases. The fully air-side integrated IGCC plant at Puertollano/Spain (Elcogas), using the advanced Siemens V94.3 gas turbine (enhanced efficiency), is now running successfully on coal gas. The coal gas composition at this plant is similar to the Buggenum example. The emission performance is comparable to Buggenum with its very low emission levels. Currently the gas turbine is running for the requirements of final optimization runs of the gasifier unit. The third IGCC plant (ISAB) equipped with Siemens gas turbine technology is located at Priolo near Siracusa at Sicilly/Italy. Two Siemens V94.2K (modified compressor) gas turbines are part of this “air side non-integrated” IGCC plant. The feedstock of the gasification process is a refinery residue (asphalt). The LHV is almost twice compared to the Buggenum or Puertollano case. For operation with this gas, the coal gas burner design was adjusted and extensively tested. IGCC operation without air extraction has been made possible by modifying the compressor, giving enhanced surge margins. Commissioning on syngas for the first of the two gas turbines started in mid of August 1999 and was almost finished at the end of August 1999. The second machine followed at the end of October 1999. Since this both machines are released for operation on syngas up to baseload.


2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Saad Alshahrani ◽  
Abraham Engeda

Abstract A performance assessment was conducted for a solar–biogas hybrid micro gas turbine integrated with a solar power tower technology. The considered system is a solar central receiver integrated with a micro gas turbine hybrid with biogas fuel as a backup. The Brayton cycle is designed to receive a dual integrated heat source input that works alternatively to keep the heat input to the system continuous. The study considered several key performance parameters including meteorological condition effects, recuperator existence and effectiveness, solar share, and gas turbine components performance. This study shows a significant reduction in CO2 emissions due to the utilization and hybridization of the renewable energies, solar, and biogas. The study reveals that the solar–biogas hybrid micro gas turbine for 100-kW power production has a CO2 emission less than a conventional fossil fuel gas turbine. Finally, the study shows that the method of power generation hybridization for solar and biogas gas turbines is a promising technique that leads to fuel-savings and lower CO2 emissions.


Author(s):  
Tadashi Tsuji

Air cooling blades are usually applied to gas turbines as a basic specification. This blade cooling air is almost 20% of compressor suction air and it means that a great deal of compression load is not converted effectively to turbine power generation. This paper proposes the CCM (Cascade Cooling Module) system of turbine blade air line and the consequent improvement of power generation, which is achieved by the reduction of cooling air consumption with effective use of recovered heat. With this technology, current gas turbines (TIT: turbine inlet temperature: 1350°C) can be up-rated to have a relative high efficiency increase. The increase ratio has a potential to be equivalent to that of 1500°C Class GT/CC against 1350°C Class. The CCM system is designed to enable the reduction of blade cooling air consumption by the low air temperature of 15°C instead of the usual 200–400°C. It causes the turbine operating air to increase at the constant suction air condition, which results in the enhancement of power and thermal efficiency. The CCM is installed in the cooling air line and is composed of three stage coolers: steam generator/fuel preheater stage, heat exchanger stage for hot water supplying and cooler stage with chilled water. The coolant (chilled water) for downstream cooler is produced by an absorption refrigerator operated by the hot water of the upstream heat exchanger. The proposed CCM system requires the modification of cooling air flow network in the gas turbine but produces the direct effect on performance enhancement. When the CCM system is applied to a 700MW Class CC (Combined Cycle) plant (GT TIT: 135°C Class), it is expected that there will be a 40–80MW increase in power and +2–5% relative increase in thermal efficiency.


Sign in / Sign up

Export Citation Format

Share Document