scholarly journals FT8-55 Mechanical Drive Aeroderivative Gas Turbine: Design of Power Turbine and Full-Load Test Results

Author(s):  
E. Aschenbruck ◽  
R. Blessing ◽  
L. Turanskyj

A new, highly efficient 25-MW aero-derivative gas turbine, model FT8-55, has been developed for mechanical drive applications as a member of the FT8 gas turbine family which also includes two generator drive gas turbines, models FT8-30 and FT8-36, with power turbine speeds of 3000 rpm and 3600 rpm, respectively. For the new mechanical drive version FT8-55, the power turbine can be operated up to 5775 rpm at maximum continuous speed. All power turbines are equipped with gas generators, model GG8-1, which are derived from the most popular aero-engine in civil aviation, the JT8D. The first part of this paper describes design features, rotor dynamics, and material selection for the three-stage power turbine PT8-55. Rotor design permits unrestricted operation in the speed range from 2500 rpm up to maximum continuous speed. The first FT8-55 gas turbine was subjected to mechanical and performance workshop tests at different speeds and power outputs up to full-load. The second part of the paper deals with the description of the test stand arrangement for testing complete gas turbine packages as well as measurement techniques and data evaluation. Power was absorbed by a two-stage pipeline compressor, equipped with magnetic bearings and dry gas seals, which was operated in a closed loop. Thermodynamic and mechanical test results at various speeds and loads provide evidence of a highly efficient and mechanically robust gas turbine for mechanical drive applications.

2015 ◽  
Vol 830-831 ◽  
pp. 211-214 ◽  
Author(s):  
Brijesh Patel ◽  
Kalpit P. Kaurase ◽  
Anil M. Bisen

Design of Turbo machinery is complex and efficiency is directly related to material performance, material selection is of prime importance. Temperature limitations are the most crucial limiting factors to gas turbine efficiencies. This paper presents the life of GTD 111 applied to gas turbine blade based on LCF and TMF test results. The LCF tests were conducted under various strain ranges based on gas turbine operating conditions. In addition, IP (in-phase) and OP (out of-phase) TMF tests were conducted under various strain ranges. The paper will focus light on above issues and each plays an important role within the Gas Turbine Material literature and ultimately influences on planning and development practices. It is expected that this comprehensive contribution will be very beneficial to everyone involved or interested in Gas Turbines.


Author(s):  
Hossein Balaghi Enalou ◽  
Eshagh Abbasi Soreshjani ◽  
Mohamed Rashed ◽  
Seang Shen Yeoh ◽  
Serhiy Bozhko

Multiple-spool gas turbines are usually utilized for power supply in aircrafts, ships, and terrestrial electric utility plants. As a result, having a reliable model of them can aid with the control design process and stability analysis. Since several interconnected components are coupled both thermodynamically and through shafts, these engines cannot be modeled linearly as single shaft gas turbines. In this paper, intercomponent volume method (ICV) has been implemented for turbine modeling. A switched feedback control system incorporating bump-less transfer and antiwindup functionality is employed as governor for the engine. Validation with test results from a three spool gas turbine highlights high accuracy of turbine-governor model in various maneuvers. Results show that over-speed after load rejection is considerable due to the fact that in this arrangement, the power turbine (PT) is not coupled with the compressor which acts like a damper for single shaft gas turbines. To address this problem, bleed valves (mainly before combustion chamber) are used to arrest the over-speed by 20%. In addition, a switch is employed into the governor system to rapidly shift fuel to permissible minimum flow.


1991 ◽  
Vol 113 (2) ◽  
pp. 290-295 ◽  
Author(s):  
H. Kumakura ◽  
T. Matsumura ◽  
E. Tsuruta ◽  
A. Watanabe

A control system has been developed for a high-quality generating set (150-kW) equipped with a two-shaft gas turbine featuring a variable power turbine nozzle. Because this generating set satisfies stringent frequency stability requirements, it can be employed as the direct electric power source for computer centers without using constant-voltage, constant-frequency power supply systems. Conventional generating sets of this kind have normally been powered by single-shaft gas turbines, which have a larger output shaft inertia than the two-shaft version. Good frequency characteristics have also been realized with the two-shaft gas turbine, which provides superior quick start ability and lower fuel consumption under partial loads.


Author(s):  
Keisuke Makino ◽  
Ken-Ichi Mizuno ◽  
Toru Shimamori

NGK Spark Plug Co., Ltd. has been developing various silicon nitride materials, and the technology for fabricating components for ceramic gas turbines (CGT) using theses materials. We are supplying silicon nitride material components for the project to develop 300 kW class CGT for co-generation in Japan. EC-152 was developed for components that require high strength at high temperature, such as turbine blades and turbine nozzles. In order to adapt the increasing of the turbine inlet temperature (TIT) up to 1,350 °C in accordance with the project goals, we developed two silicon nitride materials with further unproved properties: ST-1 and ST-2. ST-1 has a higher strength than EC-152 and is suitable for first stage turbine blades and power turbine blades. ST-2 has higher oxidation resistance than EC-152 and is suitable for power turbine nozzles. In this paper, we report on the properties of these materials, and present the results of evaluations of these materials when they are actually used for CGT components such as first stage turbine blades and power turbine nozzles.


Author(s):  
D. E. Brandt

The MS7001F heavy–duty gas turbine has been designed utilizing advanced analytical methods and a substantial array of component tests. The integrity of the system required that the prototype unit, with its accessories, be rigorously tested under load. The factory load test was completed on May 18, 1988 after 387 hours and 134 start/stop cycles. The MS7001F prototype gas turbine was instrumented with more than 3000 pieces of instrumentation in order to record all critical temperatures, pressures, flows, strains, displacements, and other pertinent data. The load device was a modified MS7001E compressor, which also supplied the means by which the MS7001F prototype compressor’s pressure ratio was increased to provide for surge margin determination. Inlet throttling of the MS7001F compressor allowed for full firing temperature operation, at reduced load. The results of this factory prototype load test are reported in the paper as are observations made during post test teardown.


Author(s):  
Jie Gao ◽  
Feng Lin ◽  
Xiying Niu ◽  
Qun Zheng ◽  
Guoqiang Yue ◽  
...  

The marine gas turbine exhaust volute is an important component that connects a power turbine and an exhaust system, and it is of great importance to the overall performance of the gas turbine. Gases exhausted from the power turbine are expanded and deflected 90 degrees in the exhaust volute, and then discharge radially into the exhaust system. The flows in the power turbine and the nonaxisymmetric exhaust volute are closely coupled and inherently unsteady. The flow interactions between the power turbine and the exhaust volute have a significant influence on the shrouded rotor blade aerodynamic forces. However, the interactions have not been taken into account properly in current power turbine design approaches. The present study aims to investigate the flow interactions between the last stage of a shrouded power turbine and the nonaxisymmetric exhaust volute with struts. Special attention is given to the coupled aerodynamics and pressure response studies. This work was carried out using coupled computational fluid dynamics (CFD) simulations with the computational domain including a stator vane, 76 shrouded rotor blades, 9 struts and an exhaust volute. Three-dimensional (3D) unsteady and steady Reynolds-averaged Navier-Stokes (RANS) solutions in conjunction with a Spalart-Allmaras turbulence model are utilized to investigate the aerodynamic characteristics of shrouded rotors and an exhaust volute using a commercial CFD software ANSYS Fluent 14.0. The asymmetric flow fields are analyzed in detail; as are the unsteady pressures on the shrouded rotor blade. In addition, the unsteady total pressures at the volute outlet is also analyzed without consideration of the upstream turbine effects. Results show that the flows in the nonaxisymmetric exhaust volute are inherently unsteady; for the studied turbine-exhaust configuration the nonaxisymmetric back-pressure induced by the downstream volute leads to the local flow varying for each shrouded blade and low frequency fluctuations in the blade force. Detailed results from this investigation are presented and discussed in this paper.


Author(s):  
Daniel E. Caguiat

The Naval Surface Warfare Center, Carderock Division (NSWCCD) Gas Turbine Emerging Technologies Code 9334 was tasked by NSWCCD Shipboard Energy Office Code 859 to research and evaluate fouling resistant compressor coatings for Rolls Royce Allison 501-K Series gas turbines. The objective of these tests was to investigate the feasibility of reducing the rate of compressor fouling degradation and associated rate of specific fuel consumption (SFC) increase through the application of anti-fouling coatings. Code 9334 conducted a market investigation and selected coatings that best fit the test objective. The coatings selected were Sermalon for compressor stages 1 and 2 and Sermaflow S4000 for the remaining 12 compressor stages. Both coatings are manufactured by Sermatech International, are intended to substantially decrease blade surface roughness, have inert top layers, and contain an anti-corrosive aluminum-ceramic base coat. Sermalon contains a Polytetrafluoroethylene (PTFE) topcoat, a substance similar to Teflon, for added fouling resistance. Tests were conducted at the Philadelphia Land Based Engineering Site (LBES). Testing was first performed on the existing LBES 501-K17 gas turbine, which had a non-coated compressor. The compressor was then replaced by a coated compressor and the test was repeated. The test plan consisted of injecting a known amount of salt solution into the gas turbine inlet while gathering compressor performance degradation and fuel economy data for 0, 500, 1000, and 1250 KW generator load levels. This method facilitated a direct comparison of compressor degradation trends for the coated and non-coated compressors operating with the same turbine section, thereby reducing the number of variables involved. The collected data for turbine inlet, temperature, compressor efficiency, and fuel consumption were plotted as a percentage of the baseline conditions for each compressor. The results of each plot show a decrease in the rates of compressor degradation and SFC increase for the coated compressor compared to the non-coated compressor. Overall test results show that it is feasible to utilize anti-fouling compressor coatings to reduce the rate of specific fuel consumption increase associated with compressor performance degradation.


Author(s):  
Mustapha Chaker ◽  
Cyrus B. Meher-Homji ◽  
Thomas Mee

The inlet fogging of gas turbine engines for power augmentation has seen increasing application over the past decade yet not a single technical paper treating the physics and engineering of the fogging process, droplet size measurement, droplet kinetics, or the duct behavior of droplets, from a gas turbine perspective, is available. This paper provides the results of extensive experimental and theoretical studies conducted over several years, coupled with practical aspects learned in the implementation of nearly 500 inlet fogging systems on gas turbines ranging in power from 5 to 250 MW. Part B of the paper treats the practical aspects of fog nozzle droplet sizing, measurement and testing presenting the information from a gas turbine fogging perspective. This paper describes the different measurement techniques available, covers design aspects of nozzles, provides experimental data on different nozzles and provides recommendations for a standardized nozzle testing method for gas turbine inlet air fogging.


Author(s):  
R. P. op het Veld ◽  
J. P. van Buijtenen

This paper investigates the layout and achievable efficiencies of rotating components of a Helium gas turbine. This is done by making a preliminary design of the compressor and turbine needed for the power conversion in a combined heat and power plant with a 40 MWth nuclear high temperature reactor as a heat source. State of the art efficiency values of air breathing gas turbines are used for the first calculations. The efficiency level is corrected by comparing various dimensionless data of the Helium turbomachine with an air gas turbine of similar dimensions. A single shaft configuration with a high speed axial turbine will give highest performance and simple construction. If a generator has to be driven at a conventional speed, a free power turbine configuration must be chosen. The choice of the configuration depends among others on the cost and availability of the asynchrone generator and frequency convertor.


1978 ◽  
Author(s):  
K. Bammert ◽  
R. Krapp ◽  
U. Reiter

The nonsteady operational behavior of single- and two-shaft closed-cycle gas turbines is investigated on the basis of two reference plants. The behavior in case of a full-load release and after emergency shutdown was calculated. It is proved that these disturbances of operation can be mastered in two-shaft plants as well as in single-shaft plants. Furthermore, the stresses caused by dynamic changes in the circuit and to be considered in designing a closed-cycle gas turbine were investigated.


Sign in / Sign up

Export Citation Format

Share Document