Parametric Study of Viscoelastic Turbulence Within an Obstructed Channel Flow

Author(s):  
Tomohiro Kawase ◽  
Takahiro Tsukahara ◽  
Yasuo Kawaguchi

The behavior of viscoelastic flow behind a two-dimensional slits was examined using direct numerical simulations (DNS). We performed DNS at five different conditions with changing the Reynolds number and the Weissenberg number, to investigate the parametric dependence of several characters of the viscoelastic flows (e.g., Toms effect and Barus effect) accompanied by the separation and reattachment. In the present conditions, the drag reduction rate was achieved from 15.1% to 19.7%. It was found that the wall-normal viscoelastic stress mainly enhanced the Barus effect in the present geometry and the streamwise viscoelastic force caused an increase of the drag. We found that, at a Weissenberg number higher than a certain level, the drag reduction rate should be decreased despite the reduced turbulent frictional drag. Moreover, we observed that, in the Newtonian flow, the spanwise vortices were dominant in a downstream region of the slits, while the streamwise vortices were dominant there in the case of the viscoelastic flow.

2018 ◽  
Vol 140 (9) ◽  
Author(s):  
Teng Zhou ◽  
Yongbo Deng ◽  
Hongwei Zhao ◽  
Xianman Zhang ◽  
Liuyong Shi ◽  
...  

Viscoelastic solution is encountered extensively in microfluidics. In this work, the particle movement of the viscoelastic flow in the contraction–expansion channel is demonstrated. The fluid is described by the Oldroyd-B model, and the particle is driven by dielectrophoretic (DEP) forces induced by the applied electric field. A time-dependent multiphysics numerical model with the thin electric double layer (EDL) assumption was developed, in which the Oldroyd-B viscoelastic fluid flow field, the electric field, and the movement of finite-size particles are solved simultaneously by an arbitrary Lagrangian–Eulerian (ALE) numerical method. By the numerically validated ALE method, the trajectories of particle with different sizes were obtained for the fluid with the Weissenberg number (Wi) of 1 and 0, which can be regarded as the Newtonian fluid. The trajectory in the Oldroyd-B flow with Wi = 1 is compared with that in the Newtonian fluid. Also, trajectories for different particles with different particle sizes moving in the flow with Wi = 1 are compared, which proves that the contraction–expansion channel can also be used for particle separation in the viscoelastic flow. The above results for this work provide the physical insight into the particle movement in the flow of viscous and elastic features.


Author(s):  
Takahiro Watanabe ◽  
Kohei Tanaka ◽  
Masaaki Motozawa ◽  
Yasuo Kawaguchi

Simultaneous Particle Image Velocimetry (PIV) measurement and Planar Laser Induced Fluorescence (PLIF) measurement at the same position were performed to clarify the relationship between spatial structure and mass transfer in the drag reducing surfactant flow. In the drag reducing flow, mass flux is largely suppressed in the near-wall region with increasing drag reduction rate. To discuss the relationship between coherent motion and drag reduction more detail, weighted probability density function was also calculated. As a result of simultaneous measurement, diffusion of wall-normal direction is largely suppressed and this indicated that turbulent coherent structure changes and sweep and ejection which produce the skin frictional drag are suppressed.


2012 ◽  
Vol 693 ◽  
pp. 433-472 ◽  
Author(s):  
Li Xi ◽  
Michael D. Graham

AbstractMaximum drag reduction (MDR), the asymptotic upper limit of reduction in turbulent friction drag by polymer additives, is the most important unsolved problem in viscoelastic turbulence. Recent studies of turbulence in minimal flow units have identified time intervals showing key features of MDR. These intervals, denoted ‘hibernating turbulence’ are found in both Newtonian and viscoelastic flows. The present study provides a comprehensive examination of this turbulence hibernation phenomenon in the minimal channel geometry, and discusses its impact on the turbulent dynamics and drag reduction. Similarities between hibernating turbulence and MDR are established in terms of both flow statistics (an intermittency factor, mean and fluctuating components of velocity) and flow structure (weak vortices and nearly streamwise-invariant kinematics). Hibernation occurs more frequently at high levels of viscoelasticity, leading to flows that increasingly resemble MDR. Viscoelasticity facilitates the occurrence of hibernation by suppressing the conventional ‘active’ turbulence, but has little influence on hibernation itself. At low Weissenberg number $\mathit{Wi}$, the average duration of active turbulence intervals is constant, but above a critical value of $\mathit{Wi}$, the duration decreases dramatically, and accordingly, the fraction of time spent in hibernation increases. This observation can be explained with a simple mathematical model that posits that the lifetime of an active turbulence interval is the time that it takes for the turbulence to stretch polymer molecules to a certain threshold value; once the molecules exceed this threshold, they exert a large enough stress on the flow to suppress the active turbulence. This model predicts an explicit form for the duration as a function of $\mathit{Wi}$ and the simulation results match this prediction very closely. The critical point where hibernation frequency becomes substantially increased coincides with the point where qualitative changes are observed in overall flow statistics – the transition between ‘low-drag-reduction’ and ‘high-drag-reduction’ regimes. Probability density functions of important variables reveal a much higher level of intermittency in the turbulent dynamics after this transition. It is further confirmed that hibernating turbulence is a Newtonian structure during which polymer extension is small. Based on these results, a framework is proposed that explains key transitions in viscoelastic turbulence, especially the convergence toward MDR.


2019 ◽  
Vol 11 (10) ◽  
pp. 168781401988192
Author(s):  
Yachao Ma ◽  
Zhiqiang Huang ◽  
Zhanghua Lian ◽  
Weichun Chang ◽  
Huan Tan

Pipeline transportation is the major way to transport natural gas. How to reduce energy dissipation and retain the gas delivery capacity are the main problems of pipeline transportation. In this article, a new drag reduction agent named CPA is synthesized. An experimental investigation on the roughness-reducing effect of CPA on the inner surface of the pipeline is carried out. The effect of CPA on natural gas flow regime in the near-wall region of the pipeline is researched with Fluent software. Field tests for calculating the drag reduction rate of CPA are performed. The results show that CPA can reduce the roughness of the inner surface effectively, and the maximum roughness-reducing percentage is 38.74%. Meanwhile, CPA can reduce the frictional drag and thereby improve transportation capacity of pipelines. After injecting CPA, the streamline of the natural gas in the near-wall region is more consistent. The velocity fluctuation decreases by 93.2%. The mean turbulence intensity decreases by 53.01%. The pipeline pressure further decreases the roughness of the inner surface of the pipeline. The field test shows that the maximum drag reduction rate of CPA is 25%, and it is suitable for application in gathering and transportation pipelines of high flow velocity and turbulent rough region.


2021 ◽  
Vol 918 ◽  
Author(s):  
X.Q. Cheng ◽  
C.W. Wong ◽  
F. Hussain ◽  
W. Schröder ◽  
Y. Zhou

Abstract


2016 ◽  
Vol 805 ◽  
pp. 303-321 ◽  
Author(s):  
A. Stroh ◽  
Y. Hasegawa ◽  
P. Schlatter ◽  
B. Frohnapfel

A numerical investigation of two locally applied drag-reducing control schemes is carried out in the configuration of a spatially developing turbulent boundary layer (TBL). One control is designed to damp near-wall turbulence and the other induces constant mass flux in the wall-normal direction. Both control schemes yield similar local drag reduction rates within the control region. However, the flow development downstream of the control significantly differs: persistent drag reduction is found for the uniform blowing case, whereas drag increase is found for the turbulence damping case. In order to account for this difference, the formulation of a global drag reduction rate is suggested. It represents the reduction of the streamwise force exerted by the fluid on a plate of finite length. Furthermore, it is shown that the far-downstream development of the TBL after the control region can be described by a single quantity, namely a streamwise shift of the uncontrolled boundary layer, i.e. a changed virtual origin. Based on this result, a simple model is developed that allows the local drag reduction rate to be related to the global one without the need to conduct expensive simulations or measurements far downstream of the control region.


2017 ◽  
Vol 827 ◽  
Author(s):  
Bayode E. Owolabi ◽  
David J. C. Dennis ◽  
Robert J. Poole

In this study, we experimentally investigate the turbulent drag-reduction (DR) mechanism in flow through ducts of circular, rectangular and square cross-sections using two grades of polyacrylamide in aqueous solution having different molecular weights and various semidilute concentrations. Specifically, we explore the relationship between drag reduction and fluid elasticity, purposely exploiting the mechanical degradation of polymer molecules to vary their rheological properties. We also obtain time-resolved velocity data for various DR levels using particle image velocimetry and laser Doppler velocimetry. Elasticity is quantified via relaxation times determined from uniaxial extensional flow using a capillary breakup apparatus. A plot of DR against Weissenberg number ($Wi$) is found to approximately collapse the data, with the onset of DR occurring at $Wi\approx 0.5$ and the maximum drag-reduction asymptote being approached for $Wi\gtrsim 5$. Thus quantitative predictions of DR in a range of shear flows can be made from a single measurable material property of a polymer solution, at least for this particular flexible linear polymer.


2013 ◽  
Vol 461 ◽  
pp. 201-205 ◽  
Author(s):  
Hua Wei Chen ◽  
Fu Gang Rao ◽  
De Yuan Zhang ◽  
Xiao Peng Shang

Flying bird has gradually formed airworthy structures e.g. streamlined shape and hollow shaft of feather to improve flying performance by millions of years natural selection. As typical property of flight feather, herringbone-type riblets can be observed along the shaft of each feather, which caused by perfect alignment of barbs. Why bird feather have such herringbone-type riblets has not been extensively discussed until now. In this paper, microstructures of secondary feathers are investigated through SEM photo of various birds involving adult pigeons, wild goose and magpie. Their structural parameters of herringbone riblets of secondary flight feather are statistically obtained. Based on quantitative analysis of feathers structure, one novel biomimetic herringbone riblets with narrow smooth edge are proposed to reduce surface drag. In comparison with traditional microgroove riblets and other drag reduction structures, the drag reduction rate of the proposed biomimetic herringbone riblets is experimentally clarified up to 15%, much higher than others. Moreover, the drag reduction mechanism of herringbone riblets are also confirmed and exploited by CFD.


2019 ◽  
Vol 874 ◽  
pp. 699-719 ◽  
Author(s):  
Jose M. Lopez ◽  
George H. Choueiri ◽  
Björn Hof

Polymer additives can substantially reduce the drag of turbulent flows and the upper limit, the so-called state of ‘maximum drag reduction’ (MDR), is to a good approximation independent of the type of polymer and solvent used. Until recently, the consensus was that, in this limit, flows are in a marginal state where only a minimal level of turbulence activity persists. Observations in direct numerical simulations at low Reynolds numbers ($Re$) using minimal sized channels appeared to support this view and reported long ‘hibernation’ periods where turbulence is marginalized. In simulations of pipe flow at $Re$ near transition we find that, indeed, with increasing Weissenberg number ($Wi$), turbulence expresses long periods of hibernation if the domain size is small. However, with increasing pipe length, the temporal hibernation continuously alters to spatio-temporal intermittency and here the flow consists of turbulent puffs surrounded by laminar flow. Moreover, upon an increase in $Wi$, the flow fully relaminarizes, in agreement with recent experiments. At even larger $Wi$, a different instability is encountered causing a drag increase towards MDR. Our findings hence link earlier minimal flow unit simulations with recent experiments and confirm that the addition of polymers initially suppresses Newtonian turbulence and leads to a reverse transition. The MDR state on the other hand results at these low$Re$ from a separate instability and the underlying dynamics corresponds to the recently proposed state of elasto-inertial turbulence.


Sign in / Sign up

Export Citation Format

Share Document