A Numerical Study of Sand Particle Erosion in a Series of Ball Seats in Gas-Particle Two-Phase Flow

Author(s):  
A. Rasteh ◽  
A. Farokhipour ◽  
M. A. Rasoulian ◽  
Z. Mansoori ◽  
M. Saffar-Avval ◽  
...  

Abstract Fracking (fracturing) is of great importance for enhancing oil and gas production from low permeability reservoirs. Since in fracking fluid, suspension of sand particles are used, the erosion failure of fracturing equipment has become an increasing concern. Accordingly, investigation of erosion of commonly used fittings such as ball seats in order to decrease its adverse consequences has attracted considerable attentions. Although the erosion wear of gas-solid flows in the pipe sudden expansion was investigated in the literature, the effect of particle size, ball seat shape and the contraction configurations on the erosion-induced wear is not fully understood. This study is aimed to explore the most erosion-resistant configuration of a ball seat under various operational conditions. A CFD model is used and a wide range of geometries are investigated. The studied configurations are categorized in three main groups including single cone, double cone and curved cone. In each category, different cone angles and curve styles are considered. The results showed that, among the single cone ball seats, the cone angle of 15° is the most erosion-resistant configuration. It was also shown that the third-order curve style cone has the best erosion performance.

2021 ◽  
Author(s):  
José Correia ◽  
Cátia Rodrigues ◽  
Ricardo Esteves ◽  
Ricardo Cesar Bezerra de Melo ◽  
José Gutiérrez ◽  
...  

Abstract Environmental and safety sensing is becoming of high importance in the oil and gas upstream industry. However, present solutions to feed theses sensors are expensive and dangerous and there is so far no technology able to generate electrical energy in the operational conditions of oil and gas extraction wells. In this paper it is presented, for the first time in a relevant environment, a pioneering energy harvesting technology based on nanomaterials that takes advantage of fluid movement in oil extraction wells. A device was tested to power monitoring systems with locally harvested energy in harsh conditions environment (pressures up to 50 bar and temperatures of 50ºC). Even though this technology is in an early development stage this work opens a wide range of possible applications in deep underwater environments and in Oil and Gas extraction wells where continuous flow conditions are present.


Author(s):  
Risa Okita ◽  
Yongli Zhang ◽  
Brenton S. McLaury ◽  
Siamack A. Shirazi ◽  
Edmund F. Rybicki

Zhang et al (2006) utilized CFD to examine the validity of erosion models that have been implemented into CFD codes to predict solid particle erosion in air and water for Inconel 625. This work is an extension of Zhang’s work and is presented as a step toward obtaining a better understanding of the effects of fluid viscosity and sand particle size on measured and calculated erosion rates. The erosion rates of Aluminum 6061-T6 were measured for direct impingement conditions of a submerged jet. Fluid viscosities of 1, 10, 25, and 50 cP and sand particle sizes of 20, 150, and 300 μm were tested. The average fluid speed of the jet was maintained at 10 m/s. Erosion data show that erosion rates for the 20 and 150 μm particles are reduced as the viscosity is increased, while surprisingly the erosion rates for the 300 μm particles do not seem to change much for the higher viscosities. For all viscosities considered, larger particles produced higher erosion rates, for the same mass of sand, than smaller particles. Concurrently, an erosion equation has been generated based on erosion testing of the same material in air. The new erosion model has been compared to available models and has been implemented into a commercially available CFD code to predict erosion rates for a variety of flow conditions, flow geometries, and particle sizes. Since particle speed and impact angle greatly influence erosion rates of the material, calculated particle speeds were compared with measurements. Comparisons reveal that, as the particles penetrate the near wall shear layer, particles in the higher viscosity liquids tend to slow down more rapidly than particles in the lower viscosity liquids. In addition, CFD predictions and particle speed measurements are used to explain why the erosion data for larger particles is less sensitive to the increased viscosities.


2009 ◽  
Vol 364 (1526) ◽  
pp. 2115-2126 ◽  
Author(s):  
Jefferson Hopewell ◽  
Robert Dvorak ◽  
Edward Kosior

Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3–4% is expended to provide energy for their manufacture. A major portion of plastic produced each year is used to make disposable items of packaging or other short-lived products that are discarded within a year of manufacture. These two observations alone indicate that our current use of plastics is not sustainable. In addition, because of the durability of the polymers involved, substantial quantities of discarded end-of-life plastics are accumulating as debris in landfills and in natural habitats worldwide. Recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today. Recycling provides opportunities to reduce oil usage, carbon dioxide emissions and the quantities of waste requiring disposal. Here, we briefly set recycling into context against other waste-reduction strategies, namely reduction in material use through downgauging or product reuse, the use of alternative biodegradable materials and energy recovery as fuel. While plastics have been recycled since the 1970s, the quantities that are recycled vary geographically, according to plastic type and application. Recycling of packaging materials has seen rapid expansion over the last decades in a number of countries. Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public, industry and governments it may be possible to divert the majority of plastic waste from landfills to recycling over the next decades.


Author(s):  
Soheil Manouchehri ◽  
Guillaume Hardouin ◽  
David Kaye ◽  
Jason Potter

Pipe-In-Pipe (PIP) systems are increasingly used in subsea oil and gas production where a low Overall Heat Transfer Coefficient (OHTC) is required. A PIP system is primarily composed of an insulated inner pipe which carries the production fluid and an outer pipe that protects the insulation material from the seawater environment. This provides a dry environment within the annulus and therefore allows the use of high quality dry insulation system. In addition, from a safety point of view, it provides additional structural integrity and a protective barrier which safeguards the pipeline from loss of containment to the environment. Genesis has designed a number of PIP systems in accordance with the recognized subsea pipeline design codes including DNV-OS-F101 [1]. In section 13 F100 of the 2013 revision, a short section has been included in which PIP systems are discussed and overall design requirements for such systems are provided. It has also been stated that the inner and outer pipes need to have the same Safety Class (SC) unless it can be documented otherwise. This paper looks at the selection of appropriate SC for the outer pipe in a design of PIP systems based on an assessment of different limit states, associated failure modes and consequences. Firstly, the fundamentals of selecting an acceptable SC for a PIP system are discussed. Then, different limit states and most probable failure modes that might occur under operational conditions are examined (in accordance with the requirements of [1]) and conclusions are presented and discussed. It is concluded that the SC of the outer pipe of a PIP system may be lower than that of the inner pipe, depending on the failure mode and approach adopted by the designer.


2019 ◽  
Vol 12 (3) ◽  
pp. 46-57 ◽  
Author(s):  
S. V. Kazantsev

The article presents the results of the author’s research of the impact of a wide range of restrictions and prohibitions applied to theRussian Federation, used by a number of countries for their geopolitical purposes and as a means of competition. The object of study was the impact of anti-Russian sanctions on the development of Oil & Gas industry and defence industry complex ofRussiain 2014–2016. The purpose of the analysis was to assess the impact of sanctions on the volume of oil and gas production, the dynamics of foreign earnings from the export of oil and gas, and of foreign earnings from the sale abroad of military and civilian products of the Russian defence industry complex (DIC). As the research method, the author used the economic analysis of the time series of statistical data presented in open statistics and literature. The author showed that some countries use the anti-Russian sanctions as a means of political, financial, economic, scientific, and technological struggle with the leadership ofRussiaand Russian economic entities. It is noteworthy that their introduction in 2014 coincided with the readiness of theUSto export gas and oil, which required a niche in the international energy market. The imposed sanctions have affected the volume of oil production inRussia, which was one of the factors of reduction of foreign earnings from the country’s oil and gas exports. However, the Russian defence industry complex has relatively well experienced the negative impact of sanctions and other non-market instruments of competition


2019 ◽  
Vol 121 ◽  
pp. 04010
Author(s):  
Victor Orlov ◽  
Leonid Levkov ◽  
Vladimir Dub ◽  
Alan Balikoev ◽  
Dmitry Shurygin

We conducted a brief review of current production and application of duplex and super duplex steels for manufacture of equipment exposed to the hazard of sulphide stress-corrosion cracking, sea water and other corrosive environment. The super duplex steel with enhanced corrosion-mechanical characteristics in comparison with the known steels of austenitic-ferritic class was developed. Based on the concepts of formation of a special structure of two-phase austenitic-ferritic steels in the process of crystallization, the possibilities of compositional, technological, thermal and special impact techniques are considered and advanced ways of controlling physical, chemical, structural homogeneity and properties of super duplex steels are developed. Electroslag remelting with the application of low-frequency alternating current provides effective control over the length of the two-phase area, the size of the primary dendrites of the austenitic and ferritic phases, the average distance between their axes, the parameters of the crystallizing cell, the development of liquation phenomena and the size of the growing non-metallic phases. Within framework of the proposed approach, the thermodynamic and kinetic conditions for the formation and growth of hardening phases are assessed, a new composition and a complex technology for the manufacture of corrosion-resistant super duplex steels for gas and oil production equipment has been developed. Thermodynamically stable, having sizes of 30-300 nm, niobium nitrides and carbonitrides are located inside the grains of the ferritic phase. At the same time, the sigma phase and chromium carbide precipitates at the intergrain boundaries are not observed. The results of the determination of mechanical and corrosion properties in accordance with the NACE TM 0177 standard (method A), tests of corrosion witness-samples in field conditions demonstrate the advantages and prospects of using new super duplex steel for the manufacture of oil and gas production equipment operating in an environment with high H2S content and CO2 under significant mechanical loads, without the risk of brittle fracture.


Energies ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2735 ◽  
Author(s):  
Pavel Lobanov ◽  
Maksim Pakhomov ◽  
Viktor Terekhov

The flow patterns and heat transfer of a downstream bubbly flow in a sudden pipe expansion are experimentally and numerically studied. Measurements of the bubble size were performed using shadow photography. Fluid phase velocities were measured using a PIV system. The numerical model was employed the Eulerian approach. The set of RANS equations was used for modelling two-phase bubbly flows. The turbulence of the carrier liquid phase was predicted using the Reynolds stress model. The peak of axial and radial fluctuations of the carrier fluid (liquid) velocity in the bubbly flow is observed in the shear layer. The addition of air bubbles resulted in a significant increase in the heat transfer rate (up to 300%). The main enhancement in heat transfer is observed after the point of flow reattachment.


2021 ◽  
Author(s):  
A. Farokhipour ◽  
Z. Mansoori ◽  
M. Saffar-Avval ◽  
G. Ahmadi

Abstract In the oil and gas industry, sand particle erosion damage to elbows is a common problem. The ability to predict erosion patterns is of great importance for sizing lines, analyzing failures, and limiting production rates. Computational fluid dynamics (CFD) can be utilized to study the erosion behavior and mitigate the erosion problem for safety purposes and greater equipment longevity. In order to alleviate the adverse results of sand erosion in elbows, the current study investigated the potential of the geometrically induced swirl flow generated from flow passing through a four-lobed twisted pipe upstream of an elbow. To this end, first, the airflow in a standard elbow equipped with different swirl pipes was simulated using the SIMPLE method, then an Eulerian-Lagrangian approach was employed to track the particles, and finally, the erosion rate was computed. The simulation results indicated that the elbow’s maximum erosion rate with twisted pipes placed upstream of the elbow is lower than the one obtained for the standard pipe. In addition, as the twisted pipe position gets closer to the bend, the erosion rate further reduces. Thus, swirling flows provide a promising prospect as a mechanism to control the erosion rate in elbows.


Author(s):  
Hee Joon Lee ◽  
Dongyao Liu ◽  
Shi-Chune Yao ◽  
Y. Alyousef

Existing data base and correlations in literature on the micro-channel pressure drop and heat transfer are reviewed. None of the existing correlations can cover the wide range of working fluids, operational conditions and different microchannel dimensions. The importance of the Bond number, which relates the nominal bubble dimension or capillary parameter with the channel size, is revealed. Using the Bond number, improved correlations of pressure drop and heat transfer are established. The new correlations predict the existing data well over wide ranges of working fluids, operational conditions and dimensions of micro-channels. Furthermore, Bond number could be used as a criterion to classify a flow path as a micro-channel or conventional macro-channel.


Sign in / Sign up

Export Citation Format

Share Document