Development of Heat Sinks for Air Cooling and Water Cooling Using Lotus-Type Porous Metals

Author(s):  
H. Chiba ◽  
T. Ogushi ◽  
H. Nakajima

In recent years, since heat dissipation rates and high frequency electronic devices have been increasing, a heat sink with high heat transfer performance is required to cool these devices. Heat sink utilizing micro-channels with several ten microns are expected to provide an excellent cooling performance because of their high heat transfer capacities due to small channel. Therefore, various porous materials such as cellular metals have been investigated for heat sink applications. However, heat sink using conventional porous materials has a high pressure drop because the cooling fluid flow through the pores is complex. Among the described porous materials, a lotus-type porous metal with straight pores is preferable for heat sinks due to the small pressured drop. In present work, cooling performance of the lotus copper heat sink for air cooling and water cooling is introduced. The experimental data for air cooling show 13.2 times higher than that for the conventional groove fins. And, the data for the water cooling show 1.7 times higher than that for the micro-channels. It is concluded that lotus copper heat sink is the most prospective candidate for high power electronics devices.

2006 ◽  
Vol 956 ◽  
Author(s):  
Oleg A. Voronov ◽  
Gary S. Tompa ◽  
Veronika Veress

ABSTRACTWhile absolute power levels in microelectronic devices are relatively modest (a few tens to a few hundred watts), heat fluxes can be significant (through 50 W/cm2 in current electronic chips and up to 2000 W/cm2 in semiconductor lasers). Diamond heat sinks enable heat transfer rates well above what is possible with standard thermal management devices. We have fabricated heat sinks using diamond, which has the highest temperature thermal conductivity of any known material. Polycrystalline diamonds manufactured by chemical vapor deposition (CVD) are machined by laser and combined with metallic or ceramic tiles. Cooling by fluid flow through micro-channels enhances heat removal. These unique attributes make diamond based heat sinks prime contenders for the next generation of high heat load sinks. Such devices could be utilized for efficient cooling in a variety of applications requiring high heat transfer capability, including semiconductor lasers, microprocessors, multi-chip modules in computers, laser-diode arrays, radar systems, and high-flux optics, among other applications. This paper will review test designs, heat flux measuring system, and measured heat removal values.


Author(s):  
M. Zugic ◽  
J. R. Culham ◽  
P. Teertstra ◽  
Y. Muzychka ◽  
K. Horne ◽  
...  

Compact, liquid cooled heat sinks are used in applications where high heat fluxes and boundary resistance preclude the use of more traditional air cooling techniques. Four different liquid cooled heat sink designs, whose core geometry is formed by overlapped ribbed plates, are examined. The objective of this analysis is to develop models that can be used as design tools for the prediction of overall heat transfer and pressure drop of heat sinks. Models are validated for Reynolds numbers between 300 and 5000 using experimental tests. The agreement between the experiments and the models ranges from 2.35% to 15.3% RMS.


2004 ◽  
Vol 126 (4) ◽  
pp. 528-534 ◽  
Author(s):  
S. B. Sathe ◽  
B. G. Sammakia

The results of a study of a new and unique high-performance air-cooled impingement heat sink are presented. An extensive numerical investigation of the heat sink performance is conducted and is verified by experimental data. The study is relevant to cooling of high-power chips and modules in air-cooled environments and applies to workstations or mainframes. In the study, a rectangular jet impinges on a set of parallel fins and then turns into cross flow. The effects of the fin thickness, gap nozzle width and fin shape on the heat transfer and pressure drop are investigated. It is found that pressure drop is reduced by cutting the fins in the central impingement zone without sacrificing the heat transfer due to a reduction in the extent of the stagnant zone. A combination of fin thicknesses of the order of 0.5 mm and channel gaps of 0.8 mm with appropriate central cutout yielded heat transfer coefficients over 1500 W/m2 K at a pressure drop of less than 100 N/m2, as is typically available in high-end workstations. A detailed study of flow-through heat sinks subject to the same constraints as the impingement heat sink showed that the flow-through heat sink could not achieve the high heat transfer coefficients at a low pressure drop.


1990 ◽  
Vol 112 (3) ◽  
pp. 234-240 ◽  
Author(s):  
G. L. Lehmann ◽  
S. J. Kosteva

An experimental study of forced convection heat transfer is reported. Direct air cooling of an electronics packaging system is modeled by a channel flow, with an array of uniformly sized and spaced elements attached to one channel wall. The presence of a single or complete row of longitudinally finned heat sinks creates a modified flow pattern. Convective heat transfer rates at downstream positions are measured and compared to that of a plain array (no heat sinks). Heat transfer rates are described in terms of adiabatic heat transfer coefficients and thermal wake functions. Empirical correlations are presented for both variations in Reynolds number (5000 < Re < 20,000) and heat sink geometry. It is found that the presence of a heat sink can both enhance and degrade the heat transfer coefficient at downstream locations, depending on the relative position.


Author(s):  
Suabsakul Gururatana ◽  
Xianchang Li

Extended surfaces (fins) have been used to enhance heat transfer in many applications. In electronics cooling, fin-based heat sinks are commonly designed so that coolants (gas or liquid) are forced to pass through the narrow straight channel. To improve the overall heat sink performance, this study investigated numerically the details of heat sinks with interrupted and staggered fins cooled by forced convection. Long and narrow flow passages or channels are widely seen in heat sinks. Based on the fundamental theory of heat transfer, however, a new boundary layer can be created periodically with interrupted fins, and the entrance region can produce a very high heat transfer coefficient. The staggered fins can take advantage of the lower temperature flow from the upstream. The tradeoff is the higher pressure loss. A major challenge for heat sink design is to reduce the pressure loss while keeping the heat transfer rate high. The effect of fin shapes on the heat sink performance was also examined. Two different shapes under study are rectangular and elliptic with various gaps between the interrupted fins in the flow direction. In addition, studies were also conducted on the parametric effects of Reynolds number and gap length. It is observed that heat transfer increases with the Reynolds number due to the feature of developing boundary layer. If the same pressure drop is considered, the heat transfer rate of elliptic fins is higher than that of rectangular fins.


2013 ◽  
Vol 709 ◽  
pp. 286-291 ◽  
Author(s):  
Li Feng Wang ◽  
Bao Dong Shao ◽  
He Ming Cheng

The purpose of this paper is to optimize the structural sizes of multi-layer rectangle micro-channel heat sink, which has been widely used to cool electronic chip for its high heat transfer coefficient and compact structure. Taking the thermal resistance and the pressure drop as goal functions, a binary-objective optimization model was proposed for the multi-layer rectangle micro-channel heat sink based on Sequential Quadratic Programming (SQP) method. The number of optimized micro-channel in width n1 and that in height n2 are 21 and 7, the width of optimized micro-channel Wc and fin Wf are 340 and 130μm, the height of optimized micro-channel Hc is 415μm, and the corresponding total thermal resistance of the whole micro-channel heat sink is 1.3354 °C/W. The corresponding pressure drop is about 1.3377 Pa. When the velocity of liquid is larger than 0.3 m/s, the effect of change of velocity of liquid on the thermal resistance and pressure drop can be neglected.


2019 ◽  
Vol 100 ◽  
pp. 00017 ◽  
Author(s):  
Paweł Gil

The performance of special type heat sink with integrated synthetic jet actuator has been presented in this work. Synthetic jet is a flow technique which synthesizes stagnant air to a form of jet. Synthetic jet produces high turbulent flow and thus high heat transfer coefficient can be achieved. Standard heat sink with fan have limited applications in particular in a dusty industrial environment. Therefore, the use of new flow technique is optimistic. The paper presents preliminary results of heat sink thermal power and characteristic temperatures during synthetic jet switched on and off. The results show that under synthetic jet switched on, the dissipated heat is 3.7 times higher than when synthetic jet is switched off.


Micromachines ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 173 ◽  
Author(s):  
Naveed Ahmed ◽  
Mohammad Pervez Mughal ◽  
Waqar Shoaib ◽  
Syed Farhan Raza ◽  
Abdulrhman M. Alahmari

To get the maximum heat transfer in real applications, the surface area of the micro-features (micro-channels) needs to be large as possible. It can be achieved by producing a maximum number of micro-channels per unit area. Since each successive pair of the micro-channels contain an inter-channels fin, therefore the inter-channels fin thickness (IFT) plays a pivotal role in determining the number of micro-channels to be produced in the given area. During machining, the fabrication of deep micro-channels is a challenge. Wire-cut electrical discharge machining (EDM) could be a viable alternative to fabricate deep micro-channels with thin inter-channels fins (higher aspect ratio) resulting in larger surface area. In this research, minimum IFT and the corresponding machining conditions have been sought for producing micro-channels in copper. The other attributes associated with the micro-channels have also been deeply investigated including the inter-channels fin height (IFH), inter-channels fin radius (IFR) and the micro-channels width (MCW). The results reveal that the inter-channels fin is the most critical feature to control during the wire electrical discharge machining (WEDM) of copper. Four types of fin shapes have been experienced, including the fins: broken at the top end, deflected at the top end, curled bend at the top, and straight with no/negligible deflection.


Author(s):  
Aalok Trivedi ◽  
Nikhil Lakhkar ◽  
Madhusudhan Iyengar ◽  
Michael Ellsworth ◽  
Roger Schmidt ◽  
...  

With the continuing industry trends towards smaller, faster and higher power devices, thermal management continues to be extremely important in the development of electronics. In this era of high heat fluxes, air cooling still remains the primary cooling solution in desktops mainly due to its cost. The primary goal of a good thermal design is to ensure that the chip can function at its rated frequency or speed while maintaining the junction temperature within the specified limit. The first and foremost step in measurement of thermal resistance and hence thermal characterization is accurate determination of junction temperature. Use of heat sinks as a thermal solution is well documented in the literature. Previously, the liquid cooled cold plate tester was studied using a different approach and it was concluded that the uncertainty in heat transfer coefficient was within 8% with errors in appropriate parameters, this result was supported by detailed uncertainty analysis based on Monte-Carlo simulations. However, in that study the tester was tested computationally. In this paper, testing and characterization of a heat sink tester is presented. Heat sinks were tested according to JEDEC JESD 16.1 standard for forced convection. It was observed that the error between computational and experimental values of thermal resistances was 10% for the cases considered.


1991 ◽  
Vol 113 (1) ◽  
pp. 27-32 ◽  
Author(s):  
G. L. Lehmann ◽  
J. Pembroke

Forced convection air cooling of an array of low profile, card-mounted components has been investigated. A simulated array is attached to one wall of a low aspect ratio duct. This is the second half of a two-part study. In this second part the presence of a longitudinally finned heat sink is considered. The heat sink is a thermally passive “flow disturbance”. Laboratory measurements of the heat transfer rates downstream of the heat sink are reported and compared with the measured values which occur when no heat sinks are present. Data are presented for three heat sink geometries subject to variations in channel spacing and flow rate. In the flow range considered laminar, transitional and turbulent heat transfer behavior has been observed. The presence of a heat sink appears to “trip” the start of transition at lower Reynolds numbers than when no heat sinks are present. A Reynolds number based on component length provides a good correlation of the heat transfer behavior due to variations in flow rate and channel spacing. Heat transfer is most strongly effected by flow rate and position relative to the heat sink. Depending on the flow regime (laminar or turbulent) both relative enhancement and reductions in the component Nusselt number have been observed. The impact of introducing a heat sink is greatest for flow rates corresponding to transitional behavior.


Sign in / Sign up

Export Citation Format

Share Document