Analysis of Power Generating Performance for Unimorph Cantilever Piezoelectric Beams With Interdigitated Electrodes

Author(s):  
Changki Mo ◽  
Sunghwan Kim ◽  
William W. Clark

A great amount of research has been done to determine whether piezoelectric materials can be used as power generators for a variety of portable and low power consuming devices. Among the possibilities for energy harvesters, the 31-type cantilever piezoelectric benders have been generally used. In this work a unimorph piezoelectric cantilever beam with the interdigitated electrode pattern was examined. The focus of this paper was to develop a model and propose design parameters to improve the power generating performance of the interdigitated piezoelectric power harvester.

Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2163 ◽  
Author(s):  
Sanghyun Yoon ◽  
Jinhwan Kim ◽  
Kyung-Ho Cho ◽  
Young-Ho Ko ◽  
Sang-Kwon Lee ◽  
...  

In this study, inertial mass-based piezoelectric energy generators with and without a spring were designed and tested. This energy harvesting system is based on the shock absorber, which is widely used to protect humans or products from mechanical shock. Mechanical shock energies, which were applied to the energy absorber, were converted into electrical energies. To design the energy harvester, an inertial mass was introduced to focus the energy generating position. In addition, a spring was designed and tested to increase the energy generation time by absorbing the mechanical shock energy and releasing a decreased shock energy over a longer time. Both inertial mass and the spring are the key design parameters for energy harvesters as the piezoelectric materials, Pb(Mg1/3Nb2/3)O3-PbTiO3 piezoelectric ceramics were employed to store and convert the mechanical force into electric energy. In this research, we will discuss the design and performance of the energy generator system based on shock absorbers.


Author(s):  
Daniel St. Clair ◽  
Christopher Stabler ◽  
Mohammed F. Daqaq ◽  
Jian Luo ◽  
Gang Li

In this work, inspired by music playing harmonicas, we conduct a conceptual investigation of a coupled aero-electromechanical system for wind energy harvesting. The system consists of a piezoelectric cantilever unimorph structure embedded within an air chamber to mimic the vibration of the reeds in a harmonica when subjected to air flow. In principle, when wind blows into the air chamber, the air pressure in the chamber increases and bends the cantilever beam opening an air path between the chamber and the environment. When the volumetric flow rate of air past the cantilever is large enough, the energy pumped into the structure via the nonlinear pressure forces offset the intrinsic damping in the system setting the beam into self-sustained limit-cycle oscillations. These oscillations induce a periodic strain in the piezoelectric layer which produces a voltage difference that can be channeled into an electric load. Unlike traditional vibratory energy harvesters where the excitation frequency needs to match the resonant frequency of the device for efficient energy extraction, the nonlinearly coupled aero-elasto dynamics of this device guarantees autonomous vibration of the cantilever beam near its natural frequency as long as the volumetric flow rate is larger than a certain threshold. Experimental results are presented to demonstrate the ability of this device to harvest wind energy under normal wind conditions.


2015 ◽  
Vol 754-755 ◽  
pp. 481-488
Author(s):  
Bibi Nadia Taib ◽  
Norhayati Sabani ◽  
Chan Buan Fei ◽  
Mazlee Mazalan ◽  
Mohd Azarulsani Md Azidin

Thin film piezoelectric material plays a vital role in micro-electromechanical systems (MEMS), due to its low power requirements and the availability of high energy harvesting. Zinc oxide is selected for piezoelectric material because of its high piezoelectric coupling coefficient, easy to deposit on silicon substrate and excellent adhesion. Deposited ZnO and Al improve the electrical properties, electrical conductivity and thermal stability. The design, fabrication and experimental test of fabricated MEMS piezoelectric cantilever beams operating in d33 mode were presented in this paper. PVD (Physical Vapor Deposition) was selected as the deposition method for aluminium while spincoating was chosen to deposit ZnO thin film. The piezoelectric cantilever beam is arranged with self-developed experimental setup consisting of DC motor and oscilloscope. Based on experimental result, the longer length of piezoelectric cantilever beam produce higher output voltage at oscilloscope. The piezoelectric cantilevers generated output voltages which were from 2.2 mV to 8.8 mV at 50 Hz operation frequency. One of four samples achieved in range of desired output voltage, 1-3 mV and the rest samples produced a higher output voltage. The output voltage is adequate for a very low power wireless sensing nodes as a substitute energy source to classic batteries.


Author(s):  
Ramizi Mohamed ◽  
Mahidur R. Sarker ◽  
Azah Mohamed

<p>Harvesting few amount of charge from environmental ambient sources namely, wind, thermal, heat, vibration, solar utilizing micro scale energy harvesting devices, offers vast view of powering for numerous portable low power electronic devices. However, power harvesting using piezoelectric crystal from low power ambient source nowdays has increasing popularity with the advantages of low cost, long life time, stability and clean energy.  Recent trends have shown that most researchers are interested in designing a low resonance frequency vibration based energy harvesting devices despite of its challenges ahead. In this paper, a low frequency based rectangular shape piezoelectric cantilever beam has been developed for energy harvesting applications. The proposed vibration based low frequency cantilever beam using piezoelectric element has been developed by finite element analysis (FEA) employing COMSOL Multiphysics platform. The main goal of the study is to analyze the outcome of geometric model of a piezoelectric cantilever beam and to calculate the resonance frequency of the structure according to its length. The material of PZT-5H, has been considered to enhance the efficiency of the low frequency based cantilever beam. Finally, the proposed result is compared with other existing works.</p>


Energies ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2770 ◽  
Author(s):  
Iman Izadgoshasb ◽  
Yee Lim ◽  
Ricardo Vasquez Padilla ◽  
Mohammadreza Sedighi ◽  
Jeremy Novak

Harvesting electricity from low frequency vibration sources such as human motions using piezoelectric energy harvesters (PEH) is attracting the attention of many researchers in recent years. The energy harvested can potentially power portable electronic devices as well as some medical devices without the need of an external power source. For this purpose, the piezoelectric patch is often mechanically attached to a cantilever beam, such that the resonance frequency is predominantly governed by the cantilever beam. To increase the power generated from vibration sources with varying frequency, a multiresonant PEH (MRPEH) is often used. In this study, an attempt is made to enhance the performance of MRPEH with the use of a cantilever beam of optimised shape, i.e., a cantilever beam with two triangular branches. The performance is further enhanced through optimising the design of the proposed MRPEH to suit the frequency range of the targeted vibration source. A series of parametric studies were first carried out using finite-element analysis to provide in-depth understanding of the effect of each design parameters on the power output at a low frequency vibration. Selected outcomes were then experimentally verified. An optimised design was finally proposed. The results demonstrate that, with the use of a properly designed MRPEH, broadband energy harvesting is achievable and the efficiency of the PEH system can be significantly increased.


Author(s):  
Sebastian Roa-Prada

Piezoelectric devices are among the most efficient and reliable solutions for power harvesting from environment vibrations. Considerable effort has been devoted recently in the engineering community towards reducing the size and increasing the power density of these generators at the micro level. The objectives of this paper are to identify commercially available materials and to determine the geometrical configuration best suited for energy harvesting applications by assessing their performance when used in a cantilever beam micro-generator with a fixed volume. To achieve this objective, a comprehensive database with properties of commercially available piezoelectric materials is first established. Then electro-mechanical simulation is carried out to study the changes in device performance with respect to variations in the geometrical configuration for a vibrating beam with a fixed end and a mass attached at the free tip. Once the materials and geometrical configuration providing the highest power output are identified, other aspects important to system implementation are discussed such as feasibility of fabrication at the desired scale and integration with the electronic circuitry. The results obtained provide guidelines for designing and realizing reduced scale cantilever-beam piezoelectric harvesters employing high performance, commercially available materials.


Author(s):  
Thiago Seuaciuc-Oso´rio ◽  
Mohammed F. Daqaq

This work addresses the accuracy and convergence of reduced-order models (ROMs) of energy harvesters. Two types of energy harvesters are considered, a magnetostrictive rod in axial vibrations and a piezoelectric cantilever beam in traverse oscillations. The partial differential equations (PDEs) and associated boundary conditions governing the motion of these harvesters are obtained. The eigenvalue problem is then solved for the exact eigenvalues and modeshapes. Furthermore, an exact expression for the steady-sate output power is attained by direct solution of the PDEs. Subsequently, the results are compared to a ROM attained following the Rayleigh-Ritz procedure. It is observed that the eigenvalues and output power near the first resonance frequency are more accurate and has a much faster convergence to the exact solution for the piezoelectric cantilever beam. In addition, it is shown that the convergence is governed by two dimensionless constants, one that is related to the electromechanical coupling and the other to the ratio between the time constant of the mechanical oscillator and the harvesting circuit. Using these results, conclusions are drawn with regards to the design values for which the common single-mode ROM is accurate.


2020 ◽  
Vol 10 (16) ◽  
pp. 5557
Author(s):  
Hong-Xia Jing ◽  
Xiao-Ting He ◽  
Da-Wei Du ◽  
Dan-Dan Peng ◽  
Jun-Yi Sun

Piezoelectric materials have been found to have many electromechanical applications in intelligent devices, generally in the form of the flexible cantilever element; thus, the analysis to the corresponding cantilever is of importance, especially when advanced mechanical properties of piezoelectric materials should be taken into account. In this study, the vibration problem of a piezoelectric cantilever beam with bimodular functionally-graded properties is solved via analytical and numerical methods. First, based on the equivalent modulus of elasticity, the analytical solution for vibration of the cantilever beam is easily derived. By the simplified mechanical model based on subarea in tension and compression, as well as on the layer-wise theory, the bimodular functionally-graded materials are numerically simulated; thus, the numerical solution of the problem studied is obtained. The comparison between the theoretical solution and numerical study is carried out, showing that the result is reliable. This study shows that the bimodular functionally-graded properties may change, to some extent, the dynamic response of the piezoelectric cantilever beam; however, the influence could be relatively small and unobvious.


2018 ◽  
Vol 1 (1) ◽  
pp. 46-51 ◽  
Author(s):  
A. V. Shelgunov

Subject: the subject of the study are low-power generator sets with a power of up to 30 kW.Materials and methods: in this paper, the main domestic legislative documents regulating the requirements for products. An assessment is made of the current state of Russian engine building.Results: the detailed analysis of the modern domestic market of power generating units with a capacity of up to 30 kW is made, the main problems in the field of domestic production of  electric power generators in the range up to 30 kW are revealed, and the prospects for import substitution of gasoline and diesel engines are noted.Conclusions: almost complete absence of the market of domestic low-power generating sets is established, insufficient measures taken to support domestic producers are noted, measures are  proposed for the development of domestic production of power units in the range of up to 30 kW.


Sign in / Sign up

Export Citation Format

Share Document