Design of a Multi-Palm Robotic Hand for Assembly Tasks

Author(s):  
Reza Movassagh-Khaniki ◽  
Neda Hassanzadeh ◽  
Abhijit Makhal ◽  
Alba Perez-Gracia

Some robotic tasks, especially those in which there are interactions between manipulated objects, require the collaborative work of two robotic arms equipped with end-effector grippers or robotic hands. Most of the current applications in which a bimanual task is attempted by a robot use two robot arm manipulators with simple grippers, in which the end-effectors are used for grasping and the remaining motion is performed by the robotic arms. In this work, we propose the design of a highly dexterous multi-fingered robotic hand, able to perform the bimanual task when attached to a simple arm manipulator. Dexterous robotic hands can be designed with more than one splitting stage; their design for a task can be done using kinematic synthesis for tree topologies. The synthesis process is applied in this case to the design of a robotic hand with three palms for a bimanual task consisting of assembling an emergency stop button.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Uikyum Kim ◽  
Dawoon Jung ◽  
Heeyoen Jeong ◽  
Jongwoo Park ◽  
Hyun-Mok Jung ◽  
...  

AbstractRobotic hands perform several amazing functions similar to the human hands, thereby offering high flexibility in terms of the tasks performed. However, developing integrated hands without additional actuation parts while maintaining important functions such as human-level dexterity and grasping force is challenging. The actuation parts make it difficult to integrate these hands into existing robotic arms, thus limiting their applicability. Based on a linkage-driven mechanism, an integrated linkage-driven dexterous anthropomorphic robotic hand called ILDA hand, which integrates all the components required for actuation and sensing and possesses high dexterity, is developed. It has the following features: 15-degree-of-freedom (20 joints), a fingertip force of 34N, compact size (maximum length: 218 mm) without additional parts, low weight of 1.1 kg, and tactile sensing capabilities. Actual manipulation tasks involving tools used in everyday life are performed with the hand mounted on a commercial robot arm.


2015 ◽  
Vol 35 (3) ◽  
pp. 259-268 ◽  
Author(s):  
Fei Chen ◽  
Luca Carbonari ◽  
Carlo Canali ◽  
Mariapaola D'Imperio ◽  
Ferdinando Cannella

Purpose – This paper aims to design a novel jaw gripper with human-sized anthropomorphic features to be suitable for precise in-hand posture transitions, such as twisting and re-positioning. The growing demand from traditional high-mix low-volume and new massive customized manufacturing industry requires the robot with configurability and flexibility. In the electronic manufacturing industry particularly, the design of the robotic hand with sufficient dexterity and configuration is important for the robot to accomplish the assembly task reliably and robustly. It is important for the robot to be able to grasp and manipulate a large number of assembly parts or tools. Design/methodology/approach – In this research, a novel jaw-like gripper with human-sized anthropomorphic features is designed for online in-hand precise positioning and twisting. It retains the simplicity feature of traditional industrial grippers and dexterity features of dexterous robotic hands. Findings – The gripper is able to apply suitable gripping force on assembly parts and performs reliable twisting movement within limited time to meet the industrial requirements. Manipulating several cylindrical assembly parts by robot, as an experimental case in this paper, is studied to evaluate its performance. The effectiveness of proposed gripper design and mechanical analysis is proved by the simulation and experimental results. Originality/value – The main originality of this research is that a novel jaw gripper with human-sized anthropomorphic features is designed to be suitable for precise in-hand posture transitions, such as twisting and re-positioning. With this gripper, the robotic system will be sufficiently flexible to deal with various assembly tasks.


10.5772/5783 ◽  
2005 ◽  
Vol 2 (3) ◽  
pp. 26 ◽  
Author(s):  
Hanafiah Yussof ◽  
Mitsuhiro Yamano ◽  
Yasuo Nasu ◽  
Kazuhisa Mitobe ◽  
Masahiro Ohka

This paper describes the development of an autonomous obstacle-avoidance method that operates in conjunction with groping locomotion on the humanoid robot Bonten-Maru II. Present studies on groping locomotion consist of basic research in which humanoid robot recognizes its surroundings by touching and groping with its arm on the flat surface of a wall. The robot responds to the surroundings by performing corrections to its orientation and locomotion direction. During groping locomotion, however, the existence of obstacles within the correction area creates the possibility of collisions. The objective of this paper is to develop an autonomous method to avoid obstacles in the correction area by applying suitable algorithms to the humanoid robot's control system. In order to recognize its surroundings, six-axis force sensors were attached to both robotic arms as end effectors for force control. The proposed algorithm refers to the rotation angle of the humanoid robot's leg joints due to trajectory generation. The algorithm relates to the groping locomotion via the measured groping angle and motions of arms. Using Bonten-Maru II, groping experiments were conducted on a wall's surface to obtain wall orientation data. By employing these data, the humanoid robot performed the proposed method autonomously to avoid an obstacle present in the correction area. Results indicate that the humanoid robot can recognize the existence of an obstacle and avoid it by generating suitable trajectories in its legs.


Author(s):  
Rishi K. Malhan ◽  
Yash Shahapurkar ◽  
Ariyan M. Kabir ◽  
Brual Shah ◽  
Satyandra K. Gupta

Using fixtures for assembly operations is a common practice in manufacturing processes with high production volume. For automated assembly cells using robotic arms, trajectories are programmed manually and robots follow the same path repeatedly. It is not economically feasible to build fixed fixtures for small volume productions as they require high accuracy and are part specific. Moreover, hand coding robot trajectories is a time consuming task. The uncertainties in part localization and inaccuracy in robot motions make it challenging to automate the task of assembling two parts with tight tolerances. Researchers in past have developed methods for automating the assembly task using contact-based search schemes and impedance control-based trajectory execution. Both of these approaches may lead to undesired collision with critical features on the parts. Our method guarantees safety for parts with delicate features during the assembly process. Our approach enables us to select optimum impedance control parameters and utilizes a learning-based search strategy to complete assembly tasks under uncertainties in bounded time. Our approach was tested on an assembly of two rectangular workpieces using KUKA IIWA 7 manipulator. The method we propose was able to successfully select the optimal control parameters. The learning-based search strategy successfully estimated the uncertainty in pose of parts and converged in few iterations.


2021 ◽  
Vol 8 ◽  
Author(s):  
Zubair Iqbal ◽  
Maria Pozzi ◽  
Domenico Prattichizzo ◽  
Gionata Salvietti

Collaborative robots promise to add flexibility to production cells thanks to the fact that they can work not only close to humans but also with humans. The possibility of a direct physical interaction between humans and robots allows to perform operations that were inconceivable with industrial robots. Collaborative soft grippers have been recently introduced to extend this possibility beyond the robot end-effector, making humans able to directly act on robotic hands. In this work, we propose to exploit collaborative grippers in a novel paradigm in which these devices can be easily attached and detached from the robot arm and used also independently from it. This is possible only with self-powered hands, that are still quite uncommon in the market. In the presented paradigm not only hands can be attached/detached to/from the robot end-effector as if they were simple tools, but they can also remain active and fully functional after detachment. This ensures all the advantages brought in by tool changers, that allow for quick and possibly automatic tool exchange at the robot end-effector, but also gives the possibility of using the hand capabilities and degrees of freedom without the need of an arm or of external power supplies. In this paper, the concept of detachable robotic grippers is introduced and demonstrated through two illustrative tasks conducted with a new tool changer designed for collaborative grippers. The novel tool changer embeds electromagnets that are used to add safety during attach/detach operations. The activation of the electromagnets is controlled through a wearable interface capable of providing tactile feedback. The usability of the system is confirmed by the evaluations of 12 users.


Author(s):  
Hiroki Dobashi ◽  
Wataru Kamioka ◽  
Takanori Fukao ◽  
Yasuyoshi Yokokohji ◽  
Akio Noda ◽  
...  
Keyword(s):  

Author(s):  
Raymond Guo ◽  
Vienny Nguyen ◽  
Lei Niu ◽  
Lyndon Bridgwater

There has been continuous research and development to add more actuators into robotic hands to increase their dexterity. However, dexterous hands require complex control and are more costly to build. Therefore, many researchers and commercial enterprises have begun developing under-actuated robotic hands with fewer actuators and passive mechanical adaptation to not only reduce complexity and cost, but to also achieve better grasp performance in unstructured settings. This paper presents the design and analysis of the Valkyrie hand — a four fingered, tendon-driven, and under-actuated robotic hand that balances dexterity and simplicity with total 14 joints, and six degrees of actuated freedom. A derivation is provided of general dynamic and static equations for the analysis of a tendon driven mechanism, based on Euler-Lagrange formulation. The equations were used to evaluate the design parameters’ impact on the hand grasp shape and closing effort, and also validated against a design case study.


Robotics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 81
Author(s):  
Santiago T. Puente ◽  
Lucía Más ◽  
Fernando Torres ◽  
and Francisco A. Candelas

This article presents a multiplatform application for the tele-operation of a robot hand using virtualization in Unity 3D. This approach grants usability to users that need to control a robotic hand, allowing supervision in a collaborative way. This paper focuses on a user application designed for the 3D virtualization of a robotic hand and the tele-operation architecture. The designed system allows for the simulation of any robotic hand. It has been tested with the virtualization of the four-fingered Allegro Hand of SimLab with 16 degrees of freedom, and the Shadow hand with 24 degrees of freedom. The system allows for the control of the position of each finger by means of joint and Cartesian co-ordinates. All user control interfaces are designed using Unity 3D, such that a multiplatform philosophy is achieved. The server side allows the user application to connect to a ROS (Robot Operating System) server through a TCP/IP socket, to control a real hand or to share a simulation of it among several users. If a real robot hand is used, real-time control and feedback of all the joints of the hand is communicated to the set of users. Finally, the system has been tested with a set of users with satisfactory results.


2020 ◽  
Vol 17 (01) ◽  
pp. 1950029
Author(s):  
Christopher Hazard ◽  
Nancy Pollard ◽  
Stelian Coros

Grasp planning and motion synthesis for dexterous manipulation tasks are traditionally done given a pre-existing kinematic model for the robotic hand. In this paper, we introduce a framework for automatically designing hand topologies best suited for manipulation tasks given high-level objectives as input. Our pipeline is capable of building custom hand designs around specific manipulation tasks based on high-level user input. Our framework comprises of a sequence of trajectory optimizations chained together to translate a sequence of objective poses into an optimized hand mechanism along with a physically feasible motion plan involving both the constructed hand and the object. We demonstrate the feasibility of this approach by synthesizing a series of hand designs optimized to perform specified in-hand manipulation tasks of varying difficulty. We extend our original pipeline 32 to accommodate the construction of hands suitable for multiple distinct manipulation tasks as well as provide an in depth discussion of the effects of each non-trivial optimization term.


Author(s):  
Brian J. Slaboch ◽  
Philip Voglewede

This paper introduces the Underactuated Part Alignment System (UPAS) as a cost-effective and flexible approach to aligning parts in the vertical plane prior to an industrial robotic assembly task. The advantage of the UPAS is that it utilizes the degrees of freedom (DOFs) of a SCARA (Selective Compliant Assembly Robot Arm) type robot in conjunction with an external fixed post to achieve the desired part alignment. Three path planning techniques will be presented that can be used with the UPAS to achieve the proper part rotation.


Sign in / Sign up

Export Citation Format

Share Document