Evaluation of the ISHM Method Applied for Composite Rotors

Author(s):  
Karina M. Tsuruta ◽  
Lucas A. A. Rocha ◽  
Aldemir Ap. Cavalini ◽  
Roberto M. Finzi Neto ◽  
Valder Steffen

Abstract The use of SHM (structural health monitoring) techniques has shown promising results for fault detection in rotating machines, making possible to identify various malfunctions. SHM methods provide maintainability and safe operation for these systems. The objective of the present work is to evaluate the SHM method based on the electromechanical impedance (ISHM) to detect faults in a composite rotor shaft. Composite materials present complex damage mechanisms due to their anisotropy and heterogeneity. Moreover, the process of damage detection in these materials is more challenging than in metallic structures. The ISHM approach uses piezoelectric (PZT – Lead Zirconate Titanate) patches as sensors and actuators coupled to the monitored structure. Variations in their electrical impedance are associated with changes in the mechanical integrity of the system. The electrical impedance of the PZT sensor is directly related to the mechanical impedance of the structure, which changes according to variations in the mass, stiffness, and damping properties of the structure. Damage metrics are used to quantify variations in the electrical impedance (impedance signatures) of the PZT patches. Despite the ISHM approach be able to detect incipient faults, it presents some disadvantages. For instance, the impedance signatures are susceptible to temperature variation. In the present contribution, to detect damages in the considered composite rotor shaft, the ISHM technique was implemented based on a data normalization methodology. Thus, an optimization procedure based on hybrid optimization was used to avoid false diagnostics.

2012 ◽  
Vol 19 (5) ◽  
pp. 811-823 ◽  
Author(s):  
L.V. Palomino ◽  
K.M. Tsuruta ◽  
J.R.V. Mour Jr ◽  
D.A. Radea ◽  
V. Steffen Jr. ◽  
...  

Structural Health Monitoring (SHM) is the process of damage identification in mechanical structures that encompasses four main phases: damage detection, damage localization, damage extent evaluation and prognosis of residual life. Among various existing SHM techniques, the one based on electromechanical impedance measurements has been considered as one of the most effective, especially in the identification of incipient damage. This method measures the variation of the electromechanical impedance of the structure as caused by the presence of damage by using piezoelectric transducers bonded on the surface of the structure (or embedded into it). The most commonly used smart material in the context of the present contribution is the lead zirconate titanate (PZT). Through these piezoceramic sensor-actuators, the electromechanical impedance, which is directly related to the mechanical impedance of the structure, is obtained as a frequency domain dynamic response. Based on the variation of the impedance signals, the presence of damage can be detected. A particular damage metric can be used to quantify the damage. For the success of the monitoring procedure, the measurement system should be robust enough with respect to environmental influences from different sources, in such a way that correct and reliable decisions can be made based on the measurements. The environmental influences become more critical under certain circumstances, especially in aerospace applications, in which extreme conditions are frequently encountered. In this paper, the influence of electromagnetic radiation, temperature and pressure variations, and ionic environment have been examined in laboratory. In this context, the major concern is to determine if the impedance responses are affected by these influences. In addition, the sensitivity of the method with respect to the shape of the PZT patches is evaluated. Conclusions are drawn regarding the monitoring efficiency, stability and precision.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2955 ◽  
Author(s):  
Mario de Oliveira ◽  
Andre Monteiro ◽  
Jozue Vieira Filho

Preliminaries convolutional neural network (CNN) applications have recently emerged in structural health monitoring (SHM) systems focusing mostly on vibration analysis. However, the SHM literature shows clearly that there is a lack of application regarding the combination of PZT-(lead zirconate titanate) based method and CNN. Likewise, applications using CNN along with the electromechanical impedance (EMI) technique applied to SHM systems are rare. To encourage this combination, an innovative SHM solution through the combination of the EMI-PZT and CNN is presented here. To accomplish this, the EMI signature is split into several parts followed by computing the Euclidean distances among them to form a RGB (red, green and blue) frame. As a result, we introduce a dataset formed from the EMI-PZT signals of 720 frames, encompassing a total of four types of structural conditions for each PZT. In a case study, the CNN-based method was experimentally evaluated using three PZTs glued onto an aluminum plate. The results reveal an effective pattern classification; yielding a 100% hit rate which outperforms other SHM approaches. Furthermore, the method needs only a small dataset for training the CNN, providing several advantages for industrial applications.


2017 ◽  
Vol 17 (3) ◽  
pp. 461-471 ◽  
Author(s):  
Weijie Li ◽  
Shuli Fan ◽  
Siu Chun Michael Ho ◽  
Jianchao Wu ◽  
Gangbing Song

For reinforced concrete structures, the use of fiber-reinforced polymer rebars to replace the steel reinforcement is a topic that is receiving increasing attention, especially where corrosion is a serious issue. However, fiber-reinforced polymer rebar–reinforced concrete always carries the risk of structural failure initiated from the debonding damage that might occur at the reinforcement–concrete interface. This study employed an electro-mechanical impedance–based structural health monitoring technique by applying lead–zirconate–titanate ceramic patches to detect the debonding damage of a carbon fiber–reinforced polymer rebar reinforced concrete. In the experimental study, a carbon fiber–reinforced polymer rebar reinforced concrete specimen was fabricated and it was subjected to a pullout test to initiate the debonding damage at the reinforcement–concrete interface. The impedance and admittance signatures were measured from an impedance analyzer according to the different debonding conditions between the reinforcement and the concrete. Statistical damage metrics, root-mean-square deviation and mean absolute percentage deviation, were used to quantify the changes in impedance signatures measured at the lead–zirconate–titanate patches due to debonding conditions. The results illustrated the capability of the electro-mechanical impedance–based structural health monitoring technique for detecting the debonding damage of fiber-reinforced polymer rebar–reinforced concrete structures.


2019 ◽  
Vol 30 (14) ◽  
pp. 2135-2146 ◽  
Author(s):  
Weijie Li ◽  
Tiejun Liu ◽  
Shasha Gao ◽  
Mingzhang Luo ◽  
Jianjun Wang ◽  
...  

Corrosion of metallic structures widely existed in multiple industries, such as oil and gas, civil infrastructure, aerospace, mechanical, mining, and processing. Current available corrosion-monitoring methods are based on different sensing principles, which have their own advantages, and some drawbacks that may limit their application on some aspects. This article presents an electromechanical impedance-instrumented corrosion-measuring probe for corrosion monitoring. The proposed probe is fabricated by attaching a circular lead zirconate titanate patch onto a metal rod. Compared to other electromechanical impedance-based corrosion-monitoring methods, the probe is capable of isolating the influence of structural complexity, variations in loading and boundary conditions. Five probes were fabricated in the experimental study and three of them were subjected to accelerated corrosion tests to mimic the corrosion-induced mass loss damage. Results showed that the peak magnitude of the conductance signatures was reduced with the increase in corrosion amount. The variations in the conductance signatures were quantified by three statistical quantifying metrics, that is, root-mean-square deviation, mean absolute percentage deviation, and correlation coefficient deviation. All these metrics increase with the increase in corrosion amount, which can be used as an indicator of the corrosion process. This study proves that the proposed corrosion-measuring probe is effective in monitoring corrosion and shows promising application potential. This research also serves as a proof-of-concept study to demonstrate the capability of the electromechanical impedance technique in monitoring mass loss due to corrosion.


Sensors ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1906 ◽  
Author(s):  
Jing Xu ◽  
Jinhui Dong ◽  
Hongnan Li ◽  
Chunwei Zhang ◽  
Siu Chun Ho

The bolted spherical joint (BSJ) has wide applications in various space grid structures. The bar and the bolted sphere are connected by the high-strength bolt inside the joint. High-strength bolt is invisible outside the joint, which causes the difficulty in monitoring the bolt looseness. Moreover, the bolt looseness leads to the reduction of the local stiffness and bearing capacity for the structure. In this regard, this study used the electro-mechanical impedance (EMI) technique and back propagation neural networks (BPNNs) to monitor the bolt looseness inside the BSJ. Therefore, a space grid specimen having bolted spherical joints and tubular bars was considered for experimental evaluation. Different torques levels were applied on the sleeve to represent different looseness degrees of joint connection. As the torque levels increased, the looseness degrees of joint connection increased correspondingly. The lead zirconate titanate (PZT) patch was used and integrated with the tubular bar due to its strong piezoelectric effect. The root-mean-square deviation (RMSD) of the conductance signatures for the PZT patch were used as the looseness-monitoring indexes. Taking RMSD values of sub-frequency bands and the looseness degrees as inputs and outputs respectively, the BPNNs were trained and tested in twenty repeated experiments. The experimental results show that the formation of the bolt looseness can be detected according to the changes of looseness-monitoring indexes, and the degree of bolt looseness by the trained BPNNs. Overall, this research demonstrates that the proposed structural health monitoring (SHM) technique is feasible for monitoring the looseness of bolted spherical connection in space grid structures.


Author(s):  
Qing Guo ◽  
G. Z. Cao ◽  
I. Y. Shen

Lead Zirconate Titanate Oxide (PbZrxTi1−xO3 or PZT) is a piezoelectric material widely used as sensors and actuators. For microactuators, PZT often appears in the form of thin films to maintain proper aspect ratios. This paper is to present a simple and low-cost method to measure piezoelectric constant d33 of PZT thin films, which is a major challenge encountered in the actuator development. We use an impact hammer with a sharp tip to generate an impulsive force that acts on the PZT film. The impulsive force and the responding voltage are then measured to calculate the piezoelectric constant d33. The impulsive force has large enough amplitude so that a good signal-to-noise ratio can be maintained. Furthermore, the impulsive force has extremely short duration, so the discharge effect (i.e., the time constant effect) of the PZT circuit can be ignored. Preliminary testing on bulk PZT through this new method leads to two conclusions. Firstly, boundary conditions of the specimen are critical. In particular, the specimen must be securely fastened. Since the impulsive load only acts on a tiny area, loose boundary conditions can introduce spurious results from other piezoelectric constant d31. Secondly, size of the specimen is critical. Specimen of smaller size leads to more accurate measurements of the piezoelectric constant d33.


Author(s):  
Liuxian Zhao ◽  
Lingyu Yu ◽  
Mattieu Gresil ◽  
Michael Sutton ◽  
Siming Guo

Electromechanical impedance (EMI) method is an effective and powerful technique in structural health monitoring (SHM) which couples the mechanical impedance of host structure with the electrical impedance measured at the piezoelectric wafer active sensor (PWAS) transducer terminals. Due to the electromechanical coupling in piezoelectric materials, changes in structural mechanical impedance are reflected in the electrical impedance measured at the PWAS. Therefore, the structural mechanical resonances are reflected in a virtually identical spectrum of peaks and valleys in the real part of the measured EMI. Multi-physics based finite element method (MP-FEM) has been widely used for the analysis of piezoelectric materials and structures. It uses finite elements taking both electrical and mechanical DOF’s into consideration, which allows good differentiation of complicated structural geometries and damaged areas. In this paper, MP-FEM was then used to simulate PWAS EMI for the goal of SHM. EMI of free PWAS was first simulated and compared with experimental result. Then the constrained PWAS was studied. EMI of both metallic and glass fiber composite materials were simulated. The first case is the constrained PWAS on aluminum beam with various dimensions. The second case studies the sensitivity range of the EMI approach for damage detection on aluminum beam using a set of specimens with cracks at different locations. In the third case, structural damping effects were also studied in this paper.. Our results have also shown that the imaginary part of the impedance and admittance can be used for sensor self-diagnosis.


2020 ◽  
Vol 978 ◽  
pp. 337-343
Author(s):  
Neelam Mishra ◽  
Chaitanya Shah ◽  
Kaushik Das

Polyvinylidene fluoride (PVDF) – Lead Zirconate Titanate (PZT) is a polymer composite that is becoming increasingly popular in micro-scale sensors and actuators because of its unique properties such as high flexibility, low density and high piezoelectric constants. However, lead-based piezoceramics, despite their superior properties, are toxic and are known to damage the environment, and as such a conscientious effort is being made by the scientific community towards replacing lead-containing piezoceramics with environmentally-friendlier and lead-free piezoceramics. Barium Titanate (BaTiO3) is one such piezoceramics that is widely studied today to be a potential replacement of PZT in many applications. As such, in this work, effort has been made to predict the effective mechanical, dielectric and piezoelectric properties of PVDF-BaTiO3 composite system using Finite Element Method (FEM). Kinematic Uniform Boundary Conditions (Displacement and Voltage) are used for this analysis. For evaluation of the effective material constants of the composite, several types of representative volume elements are considered. The effects of volume fraction, effect of the size of the micro-particles i.e. mono-modal versus multi-modal size distribution, effect of periodic versus quasi-random distribution of microparticles in the matrix, the effect of clustering of the particles, effect of orientation of the microparticles i.e. unidirectional or randomly oriented are discussed. Finally, a comparison of properties between PVDF-PZT and PVDF-BaTiO3 is made, so as to see whether PVDF-BaTiO3 can be a potential replacement for PVDF-PZT composite.


2008 ◽  
Vol 47-50 ◽  
pp. 85-88
Author(s):  
Ai Wei Miao ◽  
Yao Wen Yang

Electromechanical impedance (EMI) technique using lead zirconate titanate (PZT) transducers has been increasingly applied to structural health monitoring (SHM) of aerospace, civil and mechanical structures. The PZT transducers are usually surface bonded to or embedded in a structure and subjected to actuation so as to interrogate the structure at the desired frequency range. The interrogation results in the electromechanical admittance (inverse of EMI) signatures which can be used to estimate the structural health or integrity according to the changes of the signatures. In the existing EMI method, the monitored structure is only excited by the PZT transducers for the interrogating of EMI signature, while the vibration of the structure caused by the external excitations other than the PZT actuation is not considered. However, in real situation many structures work under vibrations. To monitor such structures, issues related to the effects of vibration on the EMI signature need to be addressed because these effects may lead to misinterpretation of the structural health. This paper develops an EMI model for beam structures, which takes into account the effect of beam vibration caused by the external excitations. An experimental study is carried out to verify the theoretical model. A Lab sized specimen with external excitation is tested and the effect of excitation on EMI signature is discussed.


2020 ◽  
Vol 31 (16) ◽  
pp. 1898-1909
Author(s):  
Qijian Liu ◽  
Yuan Chai ◽  
Xinlin Qing

A variety of structural health monitoring techniques have been developed to support the efficient online monitoring of structural integrity. Moreover, Lamb wave and electromechanical impedance methods are increasingly used for structural health monitoring applications due to their high sensitivity and effectiveness in detecting damage. However, these techniques require transducers to be permanently attached to structures because of the usage of baselines recorded under the condition without damage. In this study, a reusable piezoelectric lead zirconate titanate transducer for monitoring corrosion damage on the aluminum plate is introduced, which can be removed from the test specimen and reused with the repeatability of signals. The reusable piezoelectric lead zirconate titanate transducer is bonded on the aluminum plate using the ethylene-acrylic acid copolymer with an aluminum enclosure. A series of experiments are conducted on an aluminum plate, including the investigation for repeatability of signals and the capability of corrosion detection of the designed piezoelectric lead zirconate titanate transducer through the Lamb wave and electromechanical impedance methods. The simulated corrosion defect with the area of 15 × 15 mm2 is detected during experiments. The experimental results confirm that the reusable piezoelectric lead zirconate titanate transducer can effectively evaluate the corrosion damage to plate structure and can be reused many times.


Sign in / Sign up

Export Citation Format

Share Document