Continuous Structures With Viscoelastic Supports: Tuning of Material Parameters and Support Location

Author(s):  
Kumar Vikram Singh ◽  
Danielle Oliver ◽  
Xiaoxuan Ling

Polymeric smart materials exhibit viscoelastic behavior and their dynamic characteristics are dependent on both frequency and temperature. This allows the tuning of material properties (stiffness and loss factor) to manipulate the vibration behavior for a wide range of engineering applications. In this research, the effects of viscoelastic supports on the vibration of continuous structures such as axially vibrating rods and transversely vibrating beams are investigated. The governing equations of motion for harmonically excited rods with end supports, and the free vibration of beams with intermediate viscoelastic support are developed. The analytical response equation for a harmonically excited rod with viscoelastic ends is obtained. The resulting frequency response equations are then used to design the modification of the stiffness and loss factor of the viscoelastic materials in order to achieve the desired vibration response of the rod. By solving the resulting transcendental eigenvalue problems, the natural frequencies and damping ratios as a function of viscoelastic support parameters are computed for beams. The performance of structures with viscoelastic support is demonstrated with various numerical examples. The formulation and results can be utilized for estimating the optimal material tuning parameters as well as support locations for controlling and manipulating the vibration response of the structures.

2021 ◽  
Vol 22 (11) ◽  
pp. 5740
Author(s):  
Ramón Cervera-Procas ◽  
José-Luis Serrano ◽  
Ana Omenat

Highly functional macromolecules with a well-defined architecture are the key to designing efficient and smart materials, and these polymeric systems can be tailored for specific applications in a diverse range of fields. Herein, the formation of a new liquid crystalline polymeric network based on the crosslinking of dendrimeric entities by the CuI-catalyzed variant of the Huisgen 1,3-dipolar cycloaddition of azides and alkynes to afford 1,2,3-triazoles is reported. The polymeric material obtained in this way is easy to process and exhibits a variety of properties, which include mesomorphism, viscoelastic behavior, and thermal contraction. The porous microstructure of the polymer network determines its capability to absorb solvent molecules and to encapsulate small molecules, like organic dyes, which can be released easily afterwards. Moreover, all these properties may be easily tuned by modifying the chemical structure of the constituent dendrimers, which makes this system a very interesting one for a number of applications.


Author(s):  
Francisco González ◽  
Pierangelo Masarati ◽  
Javier Cuadrado ◽  
Miguel A. Naya

Formulating the dynamics equations of a mechanical system following a multibody dynamics approach often leads to a set of highly nonlinear differential-algebraic equations (DAEs). While this form of the equations of motion is suitable for a wide range of practical applications, in some cases it is necessary to have access to the linearized system dynamics. This is the case when stability and modal analyses are to be carried out; the definition of plant and system models for certain control algorithms and state estimators also requires a linear expression of the dynamics. A number of methods for the linearization of multibody dynamics can be found in the literature. They differ in both the approach that they follow to handle the equations of motion and the way in which they deliver their results, which in turn are determined by the selection of the generalized coordinates used to describe the mechanical system. This selection is closely related to the way in which the kinematic constraints of the system are treated. Three major approaches can be distinguished and used to categorize most of the linearization methods published so far. In this work, we demonstrate the properties of each approach in the linearization of systems in static equilibrium, illustrating them with the study of two representative examples.


2008 ◽  
Vol 130 (2) ◽  
Author(s):  
Sanjiv Ramachandran ◽  
George Lesieutre

Particle impact dampers (PIDs) have been shown to be effective in vibration damping. However, our understanding of such dampers is still limited, based on the theoretical models existing today. Predicting the performance of the PID is an important problem, which needs to be investigated more thoroughly. This research seeks to understand the dynamics of a PID as well as those parameters which govern its behavior. The system investigated is a particle impact damper with a ceiling, under the influence of gravity. The base is harmonically excited in the vertical direction. A two-dimensional discrete map is obtained, wherein the variables at one impact uniquely dictate the variables at the next impact. This map is solved using a numerical continuation procedure. Periodic impact motions and “irregular” motions are observed. The effects of various parameters such as the gap clearance, coefficient of restitution, and the base acceleration are analyzed. The dependence of the effective damping loss factor on these parameters is also studied. The loss factor results indicate peak damping for certain combinations of parameters. These combinations of parameters correspond to a region in parameter space where two-impacts-per-cycle motions are observed over a wide range of nondimensional base accelerations. The value of the nondimensional acceleration at which the onset of two-impacts-per-cycle solutions occurs depends on the nondimensional gap clearance and the coefficient of restitution. The range of nondimensional gap clearances over which two-impacts-per-cycle solutions are observed increases as the coefficient of restitution increases. In the regime of two-impacts-per-cycle solutions, the value of nondimensional base acceleration corresponding to onset of these solutions initially decreases and then increases with increasing nondimensional gap clearance. As the two-impacts-per-cycle solutions are associated with high loss factors that are relatively insensitive to changing conditions, they are of great interest to the designer.


1983 ◽  
Vol 219 (1215) ◽  
pp. 217-217

The movement of variously dense spherical particles representing a variety of seeds, fruits, spores and pollen, and released from rest into arbitrary winds and a gravitational field is discussed in general terms that account in detail for changes in the quasi-static aerodynamic resistance to motion experienced by such particles during aerial flight. A hybrid analytical-empirical law is established which describes this resistance fairly accurately for particle Reynolds numbers in the range 0—60 000 and that allows for the numerical integration of the equations of motion so as to cover a very wide range of flight conditions. This makes possible the provision of a set of four-parameter universal range tables from which the dispersal distances for an enormous number of practical cases may be estimated. One particular case of particle movement in a region of pseudo-thermal convection is also discussed and this shows how a marked degree of deposition concentration may be induced in some circumstances by such a flow. Botanists and ecologists concerned with seed and particle dispersal in the environment may find the universal range tables of particular interest and use. This is because the tables obviate the need for the integration of the equations of motion when dealing with individual cases and permit an estimation of range purely on the basis of the specified quantities of particle size, density and altitude of release, atmospheric wind speed, density and viscosity, and the acceleration due to gravity.


Author(s):  
Colette J. Whitfield ◽  
Alice M. Banks ◽  
Gema Dura ◽  
John Love ◽  
Jonathan E. Fieldsend ◽  
...  

AbstractSmart materials are able to alter one or more of their properties in response to defined stimuli. Our ability to design and create such materials, however, does not match the diversity and specificity of responses seen within the biological domain. We propose that relocation of molecular phenomena from living cells into hydrogels can be used to confer smart functionality to materials. We establish that cell-free protein synthesis can be conducted in agarose hydrogels, that gene expression occurs throughout the material and that co-expression of genes is possible. We demonstrate that gene expression can be controlled transcriptionally (using in gel gene interactions) and translationally in response to small molecule and nucleic acid triggers. We use this system to design and build a genetic device that can alter the structural property of its chassis material in response to exogenous stimuli. Importantly, we establish that a wide range of hydrogels are appropriate chassis for cell-free synthetic biology, meaning a designer may alter both the genetic and hydrogel components according to the requirements of a given application. We probe the relationship between the physical structure of the gel and in gel protein synthesis and reveal that the material itself may act as a macromolecular crowder enhancing protein synthesis. Given the extensive range of genetically encoded information processing networks in the living kingdom and the structural and chemical diversity of hydrogels, this work establishes a model by which cell-free synthetic biology can be used to create autonomic and adaptive materials.Significance statementSmart materials have the ability to change one or more of their properties (e.g. structure, shape or function) in response to specific triggers. They have applications ranging from light-sensitive sunglasses and drug delivery systems to shape-memory alloys and self-healing coatings. The ability to programme such materials, however, is basic compared to the ability of a living organism to observe, understand and respond to its environment. Here we demonstrate the relocation of biological information processing systems from cells to materials. We achieved this by operating small, programmable genetic devices outside the confines of a living cell and inside hydrogel matrices. These results establish a method for developing materials functionally enhanced with molecular machinery from biological systems.


2021 ◽  
pp. 76-87
Author(s):  
V. D Kislitsyn ◽  
K. A Mokhireva ◽  
V. V Shadrin ◽  
A. L Svistkov

The paper presents results of studying mechanical properties of polymer composites depending on types of filler particles (granular - carbon black, nanodiamonds; layered - graphene plates; fibrous - single-walled nanotubes). These nanofillers differ greatly from each other in their structure and geometry. A significant difference in behavior of nanocomposites was revealed even with little introduction of particles into the elastomer. The highest level of reinforcement of the matrix was obtained when single-wall nanotubes and detonation nanodiamonds were used as fillers. The viscoelastic properties and the Mullins softening effect [1-4] were investigated in experiments performed with material samples subjected to complex uniaxial cyclic deformation. In these experiments, the amplitude of deformations was changed step by step; and at each step a time delay was specified to complete rearrangement processes of the material structure. It was found that a pronounced softening effect after the first cycle of deformation and significant hysteresis losses occur in the material filled with single-walled nanotubes. These characteristics are insignificant for the rest of nanocomposites until elongation increases twofold. In accordance with the obtained results, a new version of the mathematical model to describe properties of the viscoelastic polymer materials was proposed. The constants of the constitutive relations were calculated for each material; the theoretical and experimental load curves were compared. As a result, the introduced model is able to describe the behavior of elastomeric nanocomposites with a high accuracy. Moreover, this model is relatively easy to use, suitable for a wide range of strain rates and stretch ratios and does not require the entire history of deformation as needed for integral models of viscoelasticity.


Author(s):  
C. Levy ◽  
Q. Chen

Abstract The partially covered, sandwich-type cantilever with concentrated mass at the free end is studied. The equations of motion for the system modeled via Euler beam theory are derived and the resonant frequency and loss factor of the system are analyzed. The variations of resonance frequency and system loss factor for different geometrical and physical parameters are also discussed. Variation of these two parameters are found to strongly depend on the geometrical and physical properties of the constraining layers and the mass ratio.


1988 ◽  
Vol 25 (04) ◽  
pp. 253-261
Author(s):  
Michael S. Pantazopoulos

A methodology is proposed to solve the problem of the three-dimensional flow of water sloshing on the deck of a vessel, and to calculate the resulting forces and moments at the center of gravity. The Eulerian equations of motion of the water particle for incompressible inviscid shallow water flow are formulated with respect to a system attached to the oscillating vessel. The system of the nonlinear hyperbolic equations of motion is solved numerically using Glimm's method (random-choice method). Complex flow patterns consisting of oblique bores and "swirling" motions of the water on deck were revealed, for a vessel oscillating in roll and pitch motions, for a wide range of excitation frequencies. Large accumulation of water occurs at the corners while parts of the deck become dry. Significant rolling moments due to sloshing are exerted on the vessel. These must be taken into account when the dynamic response of the vessel is studied.


2015 ◽  
Vol 36 (1) ◽  
pp. 19-30
Author(s):  
Justyna Barska ◽  
Sylwester Kłysz

AbstractThe article presents a wide range of applications of functional materials and a scale of their current industrial production. These are the materials which have specific characteristics, thanks to which they became virtually indispensable in certain constructional solutions. Their basic characteristics, properties, methods of production and use as smart materials were described.


Author(s):  
S J Jang ◽  
Y J Choi

Introducing the planes of symmetry into an oscillating rigid body suspended by springs simplifies the complexity of the equations of motion and decouples the modes of vibration into in-plane and out-of-plane modes. There have been some research results from the investigation into the conditions for planes of symmetry in which prior conditions for the simplification of the equations of motion are required. In this article, the conditions for the planes of symmetry that do not need prior conditions for simplification are presented. The conditions are derived from direct expansions of eigenvalue problems for stiffness and mass matrices that are expressed in terms of in-plane and out-of-plane modes and the orthogonality condition with respect to the mass matrix. Two special points, the planar couple point and the perpendicular translation point are identified, where the expressions for stiffness and compliance matrices can be greatly simplified. The simplified expressions are utilized to obtain the analytical expressions for the axes of vibration of a vibration system with planes of symmetry.


Sign in / Sign up

Export Citation Format

Share Document