A Small-Scale Solution for a Big Energy Problem: Renewable Distributed Energy

Author(s):  
Renee Comly ◽  
Alex Mathew

A Small-Scale Solution for a Big Energy Problem: Renewable Distributed Energy. Locally generated biomass, industrial and municipal wastes, coal and plastics have a significant part to play in providing a source of reliable and economic energy in the US. The ability to use these materials reliably and cleanly can be addressed with small-scale gasification technology to provide distributed generation. A technology that has improved on the historical success of gasification to provide these elements is TURNW2E™ Gasification. This technology is specifically designed to convert locally available energy resources into a clean fuel gas which is then subsequently used for heat and or power generation. This technology has the ability to operate cleanly and interchangeably using waste materials and /or coal. With the ability to produce power economically from 100 kW to 5 MW it can provide distributed generation at institutions, DOD facilities, and industrial complexes. This creates a reliable and economical energy source for the user, while disposing of wastes in an environmentally sound manner. This replaces landfill use with the energy transformation process of gasification, which provides enormous environmental benefits, including the elimination of carcinogens and reduction of greenhouse gas emissions caused by incineration processes. The use of renewable biomass and wastes provides a sustainable source of electricity that is unrestricted by grid access, providing tremendous potential to reduce US fuel imports. Using this approach, the user can create jobs and power in a sustainable scenario; without sending precious energy dollars overseas, using this process in a distributed manner will help strengthen our nation’s economy, and provide improvements to the quality of life wherever it is installed. By having the ability to use many different feedstocks, the technology can enable the avoidance of landfilling MSW and industrial wastes, including tires; it can use waste wood such as railroad ties, beetle-infested pine, and forestry wastes, farm wastes and natural disaster debris to generate renewable energy for local use or sale to the grid. Materials for processing are varied, and thus, the technology flexibility enables small-scale use in a wide range of installations, a landfill site, transfer station, farm, hospital, manufacturing facility, resort, DOD base, island community, university, and local municipal site. TURNW2E™ Gasification is available at commercial scale and is currently installed at two facilities overseas, with three US facilities planned for ’09. A training and continuing education /R&D facility is underway in the US.

Author(s):  
Patricia C. Tice

Within a remarkably short time, a wide range of small scale, short-range transportation options have catapaulted themselves into the urban environment throughout the US and the world. Incorporating these micromobility vehicles into the existing built environment poses several uniquely human opportunities and challenges. They hold out the promise of meeting the classic first mile/last mile transit access problem, but confusion remains about the best place for their use, parking, storage, and operations. This presentation will summarize a vehicle categorization scheme and an urban audit process to support urban designers and engineers as they incorporate this challenging opportunity into their community. It will also touch on specific vehicle design details that are critical to user safety. A discussion of potential options for behavioral modification using software platforms and vehicle hardware will also be provided. The presentation will conclude with design, planning, and policy recommendations for supporting micromobiltiy appropriately.


2013 ◽  
Vol 61 (4) ◽  
pp. 749-756 ◽  
Author(s):  
J. Kiciński

Abstract This paper presents examples of technologies for distributed energy generation developed under the projects coordinated by the IFFM PAS in Gdańsk. These are CHP units (generating heat and electricity) for houses with a power from several to tens of kW and for municipalities in the form of the Municipal Energy Centers (with a capacity of several hundred kW up to several MW). A unique project, specializing in “energy-plus” technologies for residential houses and other buildings, which aims to build a Research Centre of PAS in Jabłonna is also presented,. These are key technologies for energy sector with respect to distributed generation. Additionally, the article discusses the conditions and opportunities for the development of energy generation or more broadly: civic energy generation in our country. Civic energy generation is a great vision in which the citizen becomes an entity and do not subject to the energy market, and additionally has its virtual advisor in the form of smart grid and data processing technologies in a “digital cloud”.


Author(s):  
Marc Carreras ◽  
Marc Medrano ◽  
G. S. Samuelsen ◽  
Jack Brouwer ◽  
Marco Rodriguez ◽  
...  

Distributed Energy Resources (DER) have the potential to supply a significant portion of increased power demands in California and the rest of the US. Distributed generation is characterized by many stationary power generators that are distributed throughout an urban air basin. In contrast, central-generation sources are typically located outside the basin. As a result, distributed generation may lead to increased pollutant emissions within an urban air basin, which could adversely affect air quality. The present project develops a systematic approach for characterizing the installation of DER in an urban air basin and simulates the potential air quality impacts using a state-of-the-art three-dimensional computer model. The assessment of the air quality impacts associated with DER is made in the South Coast Air Basin (SoCAB) of California for the year 2010. Initial results suggest that DER characterization can be systematically applied to urban air basins, and that realistic DER implementation in SoCAB by the year 2010 only slightly affects concentrations of ozone and particulate matter in the basin.


Author(s):  
Simeon J. Yates ◽  
Jordana Blejmar

Two workshops were part of the final steps in the Economic and Social Research Council (ESRC) commissioned Ways of Being in a Digital Age project that is the basis for this Handbook. The ESRC project team coordinated one with the UK Defence Science and Technology Laboratory (ESRC-DSTL) Workshop, “The automation of future roles”; and one with the US National Science Foundation (ESRC-NSF) Workshop, “Changing work, changing lives in the new technological world.” Both workshops sought to explore the key future social science research questions arising for ever greater levels of automation, use of artificial intelligence, and the augmentation of human activity. Participants represented a wide range of disciplinary, professional, government, and nonprofit expertise. This chapter summarizes the separate and then integrated results. First, it summarizes the central social and economic context, the method and project context, and some basic definitional issues. It then identifies 11 priority areas needing further research work that emerged from the intense interactions, discussions, debates, clustering analyses, and integration activities during and after the two workshops. Throughout, it summarizes how subcategories of issues within each cluster relate to central issues (e.g., from users to global to methods) and levels of impacts (from wider social to community and organizational to individual experiences and understandings). Subsections briefly describe each of these 11 areas and their cross-cutting issues and levels. Finally, it provides a detailed Appendix of all the areas, subareas, and their specific questions.


Author(s):  
Pete Dale

Numerous claims have been made by a wide range of commentators that punk is somehow “a folk music” of some kind. Doubtless there are several continuities. Indeed, both tend to encourage amateur music-making, both often have affiliations with the Left, and both emerge at least partly from a collective/anti-competitive approach to music-making. However, there are also significant tensions between punk and folk as ideas/ideals and as applied in practice. Most obviously, punk makes claims to a “year zero” creativity (despite inevitably offering re-presentation of at least some existing elements in every instance), whereas folk music is supposed to carry forward a tradition (which, thankfully, is more recognized in recent decades as a subject-to-change “living tradition” than was the case in folk’s more purist periods). Politically, meanwhile, postwar folk has tended more toward a socialist and/or Marxist orientation, both in the US and UK, whereas punk has at least rhetorically claimed to be in favor of “anarchy” (in the UK, in particular). Collective creativity and competitive tendencies also differ between the two (perceived) genre areas. Although the folk scene’s “floor singer” tradition offers a dispersal of expressive opportunity comparable in some ways to the “anyone can do it” idea that gets associated with punk, the creative expectation of the individual within the group differs between the two. Punk has some similarities to folk, then, but there are tensions, too, and these are well worth examining if one is serious about testing out the common claim, in both folk and punk, that “anyone can do it.”


Author(s):  
J. Schiffmann

Small scale turbomachines in domestic heat pumps reach high efficiency and provide oil-free solutions which improve heat-exchanger performance and offer major advantages in the design of advanced thermodynamic cycles. An appropriate turbocompressor for domestic air based heat pumps requires the ability to operate on a wide range of inlet pressure, pressure ratios and mass flows, confronting the designer with the necessity to compromise between range and efficiency. Further the design of small-scale direct driven turbomachines is a complex and interdisciplinary task. Textbook design procedures propose to split such systems into subcomponents and to design and optimize each element individually. This common procedure, however, tends to neglect the interactions between the different components leading to suboptimal solutions. The authors propose an approach based on the integrated philosophy for designing and optimizing gas bearing supported, direct driven turbocompressors for applications with challenging requirements with regards to operation range and efficiency. Using previously validated reduced order models for the different components an integrated model of the compressor is implemented and the optimum system found via multi-objective optimization. It is shown that compared to standard design procedure the integrated approach yields an increase of the seasonal compressor efficiency of more than 12 points. Further a design optimization based sensitivity analysis allows to investigate the influence of design constraints determined prior to optimization such as impeller surface roughness, rotor material and impeller force. A relaxation of these constrains yields additional room for improvement. Reduced impeller force improves efficiency due to a smaller thrust bearing mainly, whereas a lighter rotor material improves rotordynamic performance. A hydraulically smoother impeller surface improves the overall efficiency considerably by reducing aerodynamic losses. A combination of the relaxation of the 3 design constraints yields an additional improvement of 6 points compared to the original optimization process. The integrated design and optimization procedure implemented in the case of a complex design problem thus clearly shows its advantages compared to traditional design methods by allowing a truly exhaustive search for optimum solutions throughout the complete design space. It can be used for both design optimization and for design analysis.


Land ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 385
Author(s):  
Beatrice Nöldeke ◽  
Etti Winter ◽  
Yves Laumonier ◽  
Trifosa Simamora

In recent years, agroforestry has gained increasing attention as an option to simultaneously alleviate poverty, provide ecological benefits, and mitigate climate change. The present study simulates small-scale farmers’ agroforestry adoption decisions to investigate the consequences for livelihoods and the environment over time. To explore the interdependencies between agroforestry adoption, livelihoods, and the environment, an agent-based model adjusted to a case study area in rural Indonesia was implemented. Thereby, the model compares different scenarios, including a climate change scenario. The agroforestry system under investigation consists of an illipe (Shorea stenoptera) rubber (Hevea brasiliensis) mix, which are both locally valued tree species. The simulations reveal that farmers who adopt agroforestry diversify their livelihood portfolio while increasing income. Additionally, the model predicts environmental benefits: enhanced biodiversity and higher carbon sequestration in the landscape. The benefits of agroforestry for livelihoods and nature gain particular importance in the climate change scenario. The results therefore provide policy-makers and practitioners with insights into the dynamic economic and environmental advantages of promoting agroforestry.


Author(s):  
Christl Li ◽  
Sean B. Cash ◽  
Julie Lesnik ◽  
Timothy S. Griffin ◽  
Joel Mason ◽  
...  

Abstract Although research has demonstrated the positive nutritional value and environmental benefits associated with edible insect consumption, several factors challenge the growth and development of the edible insect industry for human consumption in the US and Canada. Cultural and psychological factors account for much of the aversion US and Canadian consumers display. The absence of specific regulation also constitutes a structural barrier to more widespread production and sale of edible insects. Compared to the US, the European Union has a more developed edible insect industry and has enacted legislation that removes some of the barriers. As consumer awareness of the putative health benefits of edible insects increases, more comprehensive regulations may emerge to keep pace with the growth of this industry. Overall, a multi-disciplinary approach that addresses both benefits and barriers to consumption is needed to facilitate a robust market for edible insects in the US and Canada.


Author(s):  
Joanna Balcerek ◽  
Evelin Trejo ◽  
Kendall Levine ◽  
Paul Couey ◽  
Zoe V Kornberg ◽  
...  

Abstract Objectives Serologic testing for antibodies to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in potential donors of coronavirus disease 2019 (COVID-19) convalescent plasma (CCP) may not be performed until after blood donation. A hospital-based recruitment program for CCP may be an efficient way to identify potential donors prospectively Methods Patients who recovered from known or suspected COVID-19 were identified and recruited through medical record searches and public appeals in March and April 2020. Participants were screened with a modified donor history questionnaire and, if eligible, were asked for consent and tested for SARS-CoV-2 antibodies (IgG and IgM). Participants positive for SARS-CoV-2 IgG were referred for CCP collection. Results Of 179 patients screened, 128 completed serologic testing and 89 were referred for CCP donation. IgG antibodies to SARS-CoV-2 were detected in 23 of 51 participants with suspected COVID-19 and 66 of 77 participants with self-reported COVID-19 confirmed by polymerase chain reaction (PCR). The anti–SARS-CoV-2 IgG level met the US Food and Drug Administration criteria for “high-titer” CCP in 39% of participants confirmed by PCR, as measured by the Ortho VITROS IgG assay. A wide range of SARS-CoV-2 IgG levels were observed. Conclusions A hospital-based CCP donor recruitment program can prospectively identify potential CCP donors. Variability in SARS-CoV-2 IgG levels has implications for the selection of CCP units for transfusion.


Author(s):  
Gesa Busch ◽  
Erin Ryan ◽  
Marina A. G. von Keyserlingk ◽  
Daniel M. Weary

AbstractPublic opinion can affect the adoption of genome editing technologies. In food production, genome editing can be applied to a wide range of applications, in different species and with different purposes. This study analyzed how the public responds to five different applications of genome editing, varying the species involved and the proposed purpose of the modification. Three of the applications described the introduction of disease resistance within different species (human, plant, animal), and two targeted product quality and quantity in cattle. Online surveys in Canada, the US, Austria, Germany and Italy were carried out with a total sample size of 3698 participants. Using a between-subject design, participants were confronted with one of the five applications and asked to decide whether they considered it right or wrong. Perceived risks, benefits, and the perception of the technology as tampering with nature were surveyed and were complemented with socio-demographics and a measure of the participants’ moral foundations. In all countries, participants evaluated the application of disease resistance in humans as most right to do, followed by disease resistance in plants, and then in animals, and considered changes in product quality and quantity in cattle as least right to do. However, US and Italian participants were generally more positive toward all scenarios, and German and Austrian participants more negative. Cluster analyses identified four groups of participants: ‘strong supporters’ who saw only benefits and little risks, ‘slight supporters’ who perceived risks and valued benefits, ‘neutrals’ who showed no pronounced opinion, and ‘opponents’ who perceived higher risks and lower benefits. This research contributes to understanding public response to applications of genome editing, revealing differences that can help guide decisions related to adoption of these technologies.


Sign in / Sign up

Export Citation Format

Share Document