Path Following Performance of Narrow Tilting Vehicles Equipped With Active Steering

Author(s):  
James W. Robertson ◽  
Jos Darling ◽  
Andrew R. Plummer

Narrow Tilting Vehicles offer an opportunity to reduce both traffic congestion and carbon emissions by having a small road footprint, low weight, and a small frontal area. Their narrow width requires that they tilt into corners to maintain stability; this may be achieved by means of an automated tilting system. Automated tilt control systems can be classed as Steering Tilt Control (STC) in which active control of the front wheel steer angle is used to maintain stability, Direct Tilt Control (DTC) in which some form of actuator is used to exert a moment between the tilting part(s) of the vehicle and a non-tilting base, or a combination of the two (SDTC). Combined SDTC systems have the potential to offer improved performance as, unlike STC systems, they are effective at low speeds whilst offering superior transient roll stability to DTC systems. However, alterations to the front wheel steer angle made by STC and SDTC systems may result in unwanted deviations from the driver’s intended path. This paper uses multi-body simulations of a three-wheeled Narrow Tilting Vehicle performing an emergency lane change manoeuvre to show that the path followed by a SDTC equipped vehicle in response to a given series of steer inputs differs significantly from that followed by a DTC equipped vehicle. It is also shown that by using a revised series of steer inputs, a vehicle equipped with SDTC is able to successfully follow a similar path to one equipped with DTC, and that the roll stability of the vehicle is not unduly compromised. Finally, the influence of higher DTC system gains on the SDTC system is considered. It is shown that the result is a small improvement in the vehicle’s path following response at the expense of a small reduction in vehicle roll stability.

Author(s):  
Xingguo Qian ◽  
Chunyan Wang ◽  
Wanzhong Zhao

In the process of preventing rollover, the expected path of the driver to achieve better anti-rollover effect is often ignored, which may lead to the deviation of vehicle from the original path. Aiming at this problem, this paper considers both anti-rollover and path tracking performance, and proposes an integrated controller based on active steering and active braking. On the one hand, it can reduce the lateral acceleration and rollover risk by restraining the front wheel angle as tracking the driver’s expected path. On the other hand, through reasonably distributing the braking force of the four tires, it can offset the additional yaw moment caused by uneven distribution and reduce the impact on vehicle trajectory as the risk of rollover occurs. In addition, an improved index of rollover is put forward to give early warning to the future moment and to prevent rollover accident effectively. Simulation and hardware-in-the-loop test results show that the proposed integrated controller can ensure that the vehicle tracks the expected path well and achieves rollover prevention effectively.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1291
Author(s):  
Balázs Németh

The paper proposes a novel learning-based coordination strategy for lateral control systems of automated vehicles. The motivation of the research is to improve the performance level of the coordinated system compared to the conventional model-based reconfigurable solutions. During vehicle maneuvers, the coordinated control system provides torque vectoring and front-wheel steering angle in order to guarantee the various lateral dynamical performances. The performance specifications are guaranteed on two levels, i.e., primary performances are guaranteed by Linear Parameter Varying (LPV) controllers, while secondary performances (e.g., economy and comfort) are maintained by a reinforcement-learning-based (RL) controller. The coordination of the control systems is carried out by a supervisor. The effectiveness of the proposed coordinated control system is illustrated through high velocity vehicle maneuvers.


Robotica ◽  
2011 ◽  
Vol 30 (4) ◽  
pp. 517-535 ◽  
Author(s):  
Maciej Michałek ◽  
Krzysztof Kozłowski

SUMMARYThe paper introduces a novel general feedback control framework, which allows applying the motion controllers originally dedicated for the unicycle model to the motion task realization for the car-like kinematics. The concept is formulated for two practically meaningful motorizations: with a front-wheel driven and with a rear-wheel driven. All the three possible steering angle domains for car-like robots—limited and unlimited ones—are treated. Description of the method is complemented by the formal stability analysis of the closed-loop error dynamics. The effectiveness of the method and its limitations have been illustrated by numerous simulations conducted for the three main control tasks, namely, for trajectory tracking, path following, and set-point regulation.


2014 ◽  
Vol 23 (01) ◽  
pp. 1450008
Author(s):  
MARCONI O. DE ALMEIDA ◽  
EDUARDO T. F. SANTOS ◽  
JOSÉ M. ARAÚJO

Phase-locked loops (PLL) is a phase and/or frequency tracking system, widely used in communication and control systems. The sinusoidal multiplicative type PLL still remains a recurrent model, due the fact that its derivation is originated from the maximum likelihood approach. In this note, it is showed as a generalized product, called q-product, which can be used to implement the phase detector and improve some important parameters of the PLL system, as the block linearity and pull-in characteristics. Numerical examples are presented in order to illustrate the proposal.


2013 ◽  
Vol 433-435 ◽  
pp. 2235-2238
Author(s):  
Wei Ning Bao

The mechanical system dynamics software,ADAMS,is used to establish multi-body dynamics system model for a truck front suspension and steering system. Through the simulation test of wheel travel, front wheel alignment parameters changing along with the wheel travel was obtained.


Author(s):  
Yaxing Ren ◽  
Truong Quang Dinh ◽  
James Marco ◽  
David Greenwood

The increasing number of cars leads to traffic congestion and limits parking issue in urban area. The narrow tilting vehicles therefore can potentially become the next generation of city cars due to its narrow width. However, due to the difficulty in leaning a narrow tilting vehicle, a drive assistance strategy is required to maintain its roll stability during a turn. This article presents an effective approach using torque vectoring method to assist the rider in balancing the narrow tilting vehicles, thus reducing the counter-steering requirements. The proposed approach is designed as the combination of two torque controllers: steer angle–based torque vectoring controller and tilting compensator–based torque vectoring controller. The steer angle–based torque vectoring controller reduces the counter-steering process via adjusting the vectoring torque based on the steering angle from the rider. Meanwhile, the tilting compensator–based torque vectoring controller develops the steer angle–based torque vectoring with an additional tilting compensator to help balancing the leaning behaviour of narrow tilting vehicles. Numerical simulations with a number of case studies have been carried out to verify the performance of designed controllers. The results imply that the counter-steering process can be eliminated and the roll stability performance can be improved with the usage of the presented approach.


Author(s):  
B. A. Jujnovich ◽  
D. Cebon

Passive steering systems have been used for some years to control the steering of trailer axles on articulated vehicles. These normally use a “command steer” control strategy, which is designed to work well in steady-state circles at low speeds, but which generates inappropriate steer angles during transient low-speed maneuvers and at high speeds. In this paper, “active” steering control strategies are developed for articulated heavy goods vehicles. These aim to achieve accurate path following for tractor and trailer, for all paths and all normal vehicle speeds, in the presence of external disturbances. Controllers are designed to implement the path-following strategies at low and high speeds, whilst taking into account the complexities and practicalities of articulated vehicles. At low speeds, the articulation and steer angles on articulated heavy goods vehicles are large and small-angle approximations are not appropriate. Hence, nonlinear controllers based on kinematics are required. But at high-speeds, the dynamic stability of control system is compromised if the kinematics-based controllers remain active. This is because a key state of the system, the side-slip characteristics of the trailer, exhibits a sign-change with increasing speeds. The low and high speed controllers are blended together using a speed-dependent gain, in the intermediate speed range. Simulations are conducted to compare the performance of the new steering controllers with conventional vehicles (with unsteered drive and trailer axles) and with vehicles with command steer controllers on their trailer axles. The simulations show that active steering has the potential to improve significantly the directional performance of articulated vehicles for a wide range of conditions, throughout the speed range.


Author(s):  
Shih-Ken Chen ◽  
William C. Lin ◽  
Yuen-Kwok Steve Chin ◽  
Xiaodi Kang

This paper presents an analysis and comparison of a vehicle with active front steering and rear-wheel steering. Based on linear analysis of base vehicle characteristics under varying speed and road surfaces, desirable vehicle response characteristics are presented and a set of performance matrices for active steering systems is formulated. Using pole-placement approach, controllability issues under active front wheel steering and rear- wheel steering controls are discussed. A frequency response optimization approach is then used to design the closed-loop controllers.


2013 ◽  
Vol 312 ◽  
pp. 673-678 ◽  
Author(s):  
Rui Ling Wang ◽  
Jian Zhu Zhao ◽  
Guo Ye Wang ◽  
Xiao Kai Chen ◽  
Liang Li

To study the kinematics characteristics of conventional suspension with double trailing arms for light off-road vehicles, suspension model of a light off-road vehicle was established on multi-body dynamics software ADAMS/View, which has double trailing arms and helical springs, and make the suspension kinematics simulation for getting the caster angle and front-wheel steering angle curves on different working conditions. The results show that the double trailing arm lengths, the angles between double trailing arms and horizontal plane/vertical plane, bushing stiffness of the double trailing arms linking with frame are main parameters that affect the caster angle and front-wheel steering angle. The suspension model is rational.


Sign in / Sign up

Export Citation Format

Share Document